Multilingual Models for Natural Language Processing

Anoop Kunchukuttan

Microsoft Translator Al4Bharat

Winter School on Deep Learning for Vision and Language Modelling IIT Guwahati January 12, 2025

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models

Deep Learning has led to tremendous success

Transformer-based self-supervised pre-trained models

GLUE Benchmark

SUPERGLUE Benchmark

	Ran	ık Name	Model	URL	URL Score		Rank Name		Model		Score
	1	ERNIE Team - Baidu	ERNIE		90.9						
	2	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8	-	1	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain	n)	90.4
	3	HFL iFLYTEK	MacALBERT + DKM		90.7	+	2	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3
+	4	Alibaba DAMO NLP	StructBERT + TAPT		90.6						
+	5	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6		3	SuperGLUE Human Baseline	es SuperGLUE Human Baselines		89.8
	6	T5 Team - Google	Т5		90.3	+	4	T5 Team - Google	Τ5		89.3
	7	Microsoft D365 AI & MSR AI & GATEC	CHMT-DNN-SMART		89.9						
+	8	Huawei Noah's Ark Lab	NEZHA-Large		89.8	+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7
+	9	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	+	6	Alibaba PAI&ICBU	PAI Albert		86.1

Tasks: Classification, Structured Prediction, Span Prediction, Semantic Similarity

Prompt: Can you write a proof that there are infinitely **Prompt:** Draw a unicorn in TiKZ. many primes, with every line that rhymes?

GPT-4:

Maths

Explanations

Yes, I think I can, Though it might take a clever plan. I'll start by noting Euclid's proof, Which shows that primes aren't just aloof. Assume we have a finite list, Of primes, and that none have been missed. Multiply them all together, And add one, just to be clever. The result will be a number. That has no prime factors, oh wonder! But every number has a prime, That divides it, it's just a matter of time. So we've found a contradiction. And our finite list needs eviction. There must be infinitely many primes. And that's the end of my rhyming lines.s

Prompt: Can you generate a pyplot for the following data: $x = [1, 3, 5, 6, 8], y_1 = [2, 3, 5, 18, 1], y_2 = [3, 5, 6, 8, 1], y_3 = [5, 1, 2, 3, 4], y_4 = [9, 7, 2, 3, 1].$ I want y_1, y_2 to be in the same plot, but y_3 is in another plot next to that plot, y_4 is in below. I want the legend of y_1 to be "bob", y_2 to be "alice", y_3 to be "biblo", y_4 to be "allie". I want the *x*-axis to be labeled with "time" and y axis to be labeled with "money". I want to a du a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4:

This is a conversation between a user and an artificial intelligence agent that follows instructions or answers questions. The AI always follows the instructions correctly.

User: Can you compose a short tune (say four to eight bars) using ABC notation? AI: There are many possible ways to compose a short tune in abc notation, but here is

one example: X:1

T:Example Tune M:4/4 L:1/8 K:C |:G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-G2z2 :| |:c2de f2ed | c2de f2f2 | g2fe d2cB | c4c2z2 :| This tune has two four-bar phrases, each repeated once, forming an A part and a B part. The key is C major.

GPT-4:

User: After the first bar G2AB c2BA, you chose G to start the next bar. Give an example of a change to the notes in the first bar that would have caused you to pick D instead of G as the first note in the second bar.

AI:One possible change to the notes in the first bar that would have caused me to pick D instead of G as the first note in the sec ond bar is:

|:G2AB c2Bc | ...

This change creates a stronger cadence on the C note at the end of the first bar, which is the fifth degree of the scale. This suggests a modulation to the dominant key of G major, which has D as its fifth degree. Therefore, starting the second bar with D would create a smooth transition to the new key and imply a harmonic progression of V-I.

Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8], y1 = [2, 3, 5, 18, 1], y2 = [3, 5, 6, 8, 1], y3 = [5, 1, 2, 3, 4], y4 = [9, 7, 2, 3, 1]. I want y1, y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in below. I want the legend of y1 to be "bob", y2 to be "allice", y3 to be "bilbo", y4 to be "allie". I want the *x*-axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Prompt:

struct mystruct_A { char a; int b; char c; } x; struct mystruct_B { int b; char a; char c; } y;

#include <stdio.h>

```
int main(void) {
    printf("Size of x: %zu bytes\n", sizeof(x));
    printf("Size of y: %zu bytes\n", sizeof(y));
    return 0;
```

GPT-4:

Possible Output:

There are different ways to implement and align structures in memory, so the exact output may vary depending on the compiler, platform, and options used. However, one possible output is:

Size of x: 12 bytes Size of y: 8 bytes

This output assumes that the compiler uses 4-byte alignment for structures, meaning that each structure member starts at an offset that is a multiple of 4 bytes from the beginning of the structure. This may result in some padding bytes being inserted between or after the members to maintain alignment. For example, in x, there may be 3 padding bytes after a and 3 padding bytes after c, while in y, there may be no padding at all. The size of a structure is the sum of the sizes of its members plus any padding bytes.

Understanding Programs

(SparksOfAGI)

Plotting

Large Language Models show great performance on diverse open-ended tasks

Transformer-based self-supervised decoder only models

Rank* (UB)	🔄 Model 🔺	<pre> Arena ▲ Elo </pre>	05% ▲ CI	Votes	Organization	License 🔺	Knowledg Cutoff
1	<u>GPT-40-2024-05-13</u>	1287	+4/-4	32181	OpenAI	Proprietary	2023/10
2	Gemini-1.5-Pro- API-0514	1267	+5/-4	25519	Google	Proprietary	2023/11
2	Gemini-Advanced- 0514	1266	+5/-5	27225	Google	Proprietary	Online
4	Gemini-1.5-Pro- API-0409-Preview	1257	+3/-3	55731	Google	Proprietary	2023/11
4	<u>GPT-4-Turbo-2024- 04-09</u>	1256	+2/-2	59891	OpenAI	Proprietary	2023/12
5	GPT-4-1106-preview	1251	+2/-3	80067	OpenAI	Proprietary	2023/4
6	<u>Claude 3 Opus</u>	1248	+2/-2	123645	Anthropic	Proprietary	2023/8
6	GPT-4-0125-preview	1246	+3/-2	73286	OpenAI	Proprietary	2023/12
9	Yi-Large-preview	1239	+4/-3	34567	01 AI	Proprietary	Unknown

(LMSys Chatbot Arena)

Tasks: Open-ended Question Answering evaluated on dynamic questions based on human preferences

What is the recipe behind the success of English NLP?

 $BERT \rightarrow encoder$ BART \rightarrow encoder-decoder $GPT \rightarrow decoder$

Collect a large amount of textual data

Learn a language model using **very large neural** *networks* trained for a *long time* The first recorded travels by Europeans to China and back date from this time. The most famous traveler of the period was the Venetian Marco Polo, whose account of his trip to "Cambaluc," the capital of the Great Khan, and of life there astounded the people of Europe. The account of his travels, II milione (or, The Million, known in English as the Travels of Marco Polo), appeared about the year 1299. Some argue over the accuracy of Marco Polo's accounts due to the lack of mentioning the Great Wall of China, tea houses, which would have been a prominent sight since Europeans had yet to adopt a tea culture, as well the practice of foot binding by the women in capital of the Great Khan. Some suggest that Marco Polo acquired much of his knowledge through contact with Persian traders since many of the places he named were in Persian.

How did some suspect that Polo learned about China instead of by actually visiting it? Answer: through contact with Persian traders

Finetune the language model on reasonable amount of data

- Task-specific
- General instruction-response
- Human Preference

In-context learning abilities in LLMs Lot of supervised data

Lot of monolingual data

Lot of memory & computation

Benefits of LLMs are mostly limited to English

I anguaga	Cat	Chat	tGPT
Language	Cal.	(en)	(spc)
English	Н	70.2	70.2
Russian	Н	60.8	45.4
German	Η	64.5	51.1
Chinese	Η	58.2	35.5
French	Η	64.8	42.2
Spanish	Η	65.8	47.4
Vietnamese	Η	55.4	44.8
Turkish	М	57.1	37.1
Arabic	Μ	55.3	22.3
Greek	Μ	55.9	54.5
Thai	Μ	44.7	11.5
Bulgarian	Μ	59.7	44.6
Hindi	Μ	48.8	5.6
Urdu	L	43.7	6.3
Swahili	Х	50.3	40.8

Results on XNLI

Longuaga	Cat	Chate	ChatGPT(en)					
Language	Cal.	EM	F1					
English	Н	56.0	74.9					
Russian	Н	30.2	49.1					
German	Н	45.9	65.8					
Chinese	Н	37.1	42.3					
Spanish	Н	41.8	65.8					
Vietnamese	Н	36.1	57.3					
Turkish	Μ	34.5	56.4					
Arabic	Μ	32.0	50.3					
Greek	Μ	29.7	45.0					
Thai	Μ	31.2	43.4					
Hindi	Μ	17.5	37.8					
Average		35.6	53.5					

#langs	avg. chrF	avg. BLEU
202	22.2	16.7
203	52.5	10.7
203	33.1	17.3
20	44.6	24.6
201	45.3	27.1
115	52.2	34.6
	#langs. 203 203 20 201 115	avg. #langs. chrF 203 32.3 203 33.1 20 44.6 201 45.3 115 52.2

Performance on translation averaged across languages

Results on QnA

	Chat	JPT	NLI	B
Lang.	BLEU	chrF	BLEU	chrF
srp_Cyrl	1.36	3.26	43.4	59.7
kon_Latn	0.94	8.50	18.9	45.3
tso_Latn	2.92	15.0	26.7	50.0
kac_Latn	0.04	2.95	14.3	37.5
nso_Latn	3.69	16.7	26.5	50.8
jpn_Jpan	28.4	32.9	20.1	27.9
nno_Latn	37.1	58.7	33.4	53.6
zho_Hans	36.3	31.0	26.6	22.8
zho_Hant	26.0	24.4	12.4	14.0
acm_Arab	28.2	44.7	11.8	31.9

Performance on translation High vs low resource

- Significant gap between English and other languages on multiple tasks
- High-resource and Latin script languages can give good performance on GPT
- Poor performance on low-resource languages
- Translate-test is a strong baseline
- Open-source models lag behind GPT models → they are very English heavy

(BUFFET, MEGA, ChatGptMT, ChatGptMLing)

Disparity in linguistic resources has always been an issue for NLP

Wikipedia/CommonCrawl data as a proxy for monolingual data availability

How do we bring the state-of-the-art NLP solutions to all languages?

Can we train such large models for all languages?

Joshi et al. The State and Fate of Linguistic Diversity and Inclusion in the NLP World. ACL 2023.

The proposed recipe for multilingual NLP

Joint learning leads to transfer of knowledge across languages

Transfer Learning

Joint Learning

- Analogy to Multi-task learning → Task = Language
- Related Tasks can share representations
- *Representation Bias:* Generalize over multiple languages
- Eavesdropping
- Data Augmentation

(Caruana., 1997)

Similar words and sentences across languages have similar embeddings

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models

Output (text or otherwise)

Application specific Deep Neural Network layers

Output (text or otherwise)

Application specific Deep Neural Network layers

Output (text or otherwise)

Application specific Deep Neural Network layers

Output (text or otherwise)

Application specific Deep Neural Network layers

Output (text or otherwise)

Application specific Deep Neural Network layers

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models

Word Embeddings

Distributed, dense vector representations of words that capture similarities between words

"Words that occur in similar contexts tend to have similar meanings" - Turney and Pantel (2010)

He is unhappy about the failure of the project

The failure of the team to successfully finish the task made him sad

French boire buvait roi prince reine princesse

<u>Monolingual Word Representations</u> (capture syntactic and semantic similarities between words)

$$embed(y) = f(embed(x))$$

x, y are source and target words embed(w): embedding for word w

<u>Multilingual Word Representations</u> (capture syntactic and semantic similarities between words both <u>within and across languages</u>)

(Source: Khapra and Chandar, 2016)

Is it possible to learn mapping functions?

• Languages share concepts ground in the real world

- Some evidence of universal semantic structure (*Youn et al., 2016*)
- Isomorphism between embedding spaces (*Mikolov et al., 2013*)
- Isomorphism can be captured via a linear transformation

(Source: Mikolov et al., 2013)

Supervised Learning

Linear Least Square and variants

(Mikolov et al., 2013; Xing et al., 2015; Artetxe et al., 2016; Smith et al., 2017)

XW = Y

$$W^* = \underset{W \in \mathbb{R}^d}{\operatorname{argmin}} \|XW - Y\|_2^2$$

We can have a closed form solution:

$$X^+ = (X^T X)^{-1} X^T$$

 $W^* = X^+ Y$

MUSE is popular toolkit to learn cross-lingual word embeddings https://github.com/facebookresearch/MUSE

Methods mapping different languages to a common space

Canonical Correlation Analysis (CCA) (Faruqui and Dyer, 2014;

Ammar et al. 2015)

GeoMM (Jawanpuria et al., 2019)

Output (text or otherwise)

Application specific Deep Neural Network layers Text Embedding

Initialize model with

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models

Multilingual Language Models

Encoder Models for NLU: mBERT (Multilingual BERT)

- Simple extension to monolingual BERT training
- BERT trained jointly on monolingual data from Wikipedias of 104 languages
- Standard MLM objective
- Shared word-piece vocabulary (110k shared WordPiece)
- No parallel resources to provide translation information across languages

Temperature based data sampling to address data skew (during vocab construction and pre-training)

Data Distribution Language *I*

Language *I*

Sampling Probability

 $p_l = \frac{D_l}{\Sigma_k D_k}$

T=1 T=5 T=100 High Resource (HR) Medium Resource (MR) Low Resource (LR) Sampling Probability

104 languages, 12-layer, 768-hidden, 12-heads, 172M parameters

Surprisingly good at zero-shot cross-lingual model transfer

	Model	D	#M	#lg	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW	ur	Avg
XNLI	Fine-tune multilingual model on English training set (Cross-lingual Transfer)																			
	Devlin et al. (2018)	Wiki	Ν	102	82.1	73.8	74.3	71.1	66.4	68.9	69.0	61.6	64.9	69.5	55.8	69.3	60.0	50.4	58.0	66.3

NER

Model	train	#M	en	nl	es	de	Avg
Lample et al. (2016) Akbik et al. (2018)	each each	N N	90.74 93.18	81.74 90.44	85.75	78.76 88.27	84.25
mBERT [†]	each en	N 1	91.97 91.97	90.94 77.57	87.38 74.96	82.82 69.56	88.28 78.52

Can we do better data and larger models?

XLM-R

Conneau et al. Facebook. Unsupervised Cross-lingual Representation Learning at Scale. ACL 2020

Essentially mBERT architecture

Train on very large dataset (CommonCrawl derived CC-100 dataset)

Increased Model capacity

Model	#lgs	tokenization	L	H_m	H_{ff}	A	V	#params
mBERT	104	WordPiece	12	768	3072	12	110k	172M
XLM-R Base	100	SPM	12	768	3072	12	250k	270M
XLM-R	100	SPM	24	1024	4096	16	250k	550M

Tradeoff studies

Positive transfer vs. capacity dilution High vs. low resource language performance

Factors that improve model quality

- Larger model capacity helps
- More monolingual data is better
- Longer Pre-training
 - Don't use validation perplexity for early stopping of pre-training
- Larger vocabulary
- Larger batch size while pre-training
- Performance degrades with increasing number of pretraining languages
- Right trade-off of using high vs low resource languages via data sampling

mBERT does not use any cross-lingual signals for learning ... Why does multilingual BERT work?

What is the nature of the multilingual representations?

Does word-piece overlap explain zeroshot performance of mBERT?

For English-BERT, the NER performance increases with word overlap

For M-BERT, the NER performance is not strongly correlated to wordpiece overlap

M-BERT learns about language structure beyond word-piece overlap

Zero-short transfer happens even hold even though the scripts are different

	HI	UR		EN	BG	JA
HI	97.1	85.9	EN	96.8	87.1	49.4
UR	91.1	93.8	BG	82.2	98.9	51.6
			JA	57.4	67.2	96.5

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

Does not generalize for all languages – see Japanese which has a different word order from English

How does typological similarity affect M-BERT's ability to generalize?

	SVO	SOV			AN	NA
SVO	81.55	66.52		AN	73.29	70.94
SOV	63.98	64.22		NA	75.10	79.64
(a) Subj	./verb/ob	j. order.	((b) Adj	ective/no	un order.

Table 5: Macro-average POS accuracies when transferring between SVO/SOV languages or AN/NA languages. Row = fine-tuning, column = evaluation.

Study of effect of grammatical features related to ordering

Performance is best when transferring between languages that share word order features

Cannot learn syntactic transformations

Why does multilingual BERT work?

Hypothesis:

Word pieces used in all languages (numbers, URLs, etc) which have to be mapped to a shared space forces the co-occurring pieces to also be mapped to a shared space, thus spreading the effect to other word pieces, until different languages are close to a shared space

Similar findings in Shijie Wu, Mark Dredze. Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT. EMNLP 2019.

Somewhat different findings in: Karthikeyan K, Zihan Wang, Stephen Mayhew, Dan Roth. Cross-Lingual Ability of Multilingual BERT: An Empirical Study. ICLR. 2020.

- Lexical overlap does not matter (Use FakeEnglish to destroy lexical similarity)
- Structural similarity matters

How language neural is mBERT?

- Representations cluster by language family
- Language information is still maintained at each layer
- Mean centering the embeddings per language can improve language invariant behaviour

	mBERT	UDify	lng-free
[cls]	.935	.938	.796
[cls], cent.	.867	.851	.337
mean-pool	.919	.896	.230
mean-pool, cent.	.285	.243	.247

Table 1: Accuracy of language identification, values from the best-scoring layers.

	mBERT	UDify	lng-free
[cls]	.639	.462	.549
[cls], cent.	.684	.660	.686
[cls], proj.	.915	.933	.697
mean-pool	.776	.314	.755
mean-pool, cent.	.838	.564	.828
mean-pool, proj.	.983	.906	.983

Table 3: Average accuracy for sentence retrieval over all 30 language pairs.

Libovicky et al., On the Language Neutrality of Pre-trained Multilingual Representations. EMNLP-Findings. 2020.
Language-family specific pre-trained models

IndicBERT → model for 22 Indian languages + English)

		(Classificat	ion	Structur	e Prediction	QA	Retreival	
Models	Indic Sentiment	Indic XNLI	Indic COPA	Indic XPara.	MASSIVE (Intent)	Naama- Padam	MASSIVE (Slotfill)	Indic QA	FLORES
IndicBERT v1	61.8	42.8	51.0	47.5	-	25.3	-	10.1	1.1
mBERT	69.5	54.7	51.7	55.2	13.2	63.0	6.2	32.9	32.3
XLMR	84.0	69.7	60.1	56.7	66.6	71.7	50.0	44.8	3.1
MuRIL	85.1	72.4	58.9	60.8	77.2	74.3	57.0	48.3	52.3
v1-data	85.7	66.4	52.4	49.6	25.8	58.3	34.4	37.6	54.9
IndicBERT v2	88.3	73.0	62.7	56.9	78.8	73.2	56.7	47.7	69.4
+Samanantar	88.3	74.3	63.0	57.0	78.8	72.4	57.3	49.2	64.7
+Back-Trans.	87.5	69.7	53.8	50.7	77.4	71.9	54.6	42.2	68.6
IndicBERT-SS	88.1	73.9	64.2	56.4	80.7	66.6	57.3	49.7	71.2

Table 4: Results averaged across **languages** from the IndicXTREME benchmark. We report F1 scores for Structure Prediction & QA, and accuracy for the other tasks.

Compact models can outperform large models built for 100+ languages

^{1.} Doddapaneni et al. Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages. ACL. 2023

^{2.} Khanuja et al. MuRIL: *Multilingual Representations for Indian Languages*. <u>https://arxiv.org/abs/2103.10730</u>. 2021.

^{3.} Divyanshu Kakwani, etal., AI4Bharat/Microsoft India. IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages. EMNLP-Findings . 2020.

How do we use parallel data to improve multilingual models?

Input two sentence from different languages

Model alternates with MLM and TLM objectives

TLM → the model can look at both sentences to predict masked token

Cross-lingual objectives \rightarrow Huang et al., Microsoft. Unicoder: A Universal Language Encoder by Pre-training with Multiple Cross-lingual Tasks. EMNLP. 2019.

Contrastive objectives \rightarrow Wei et al. Alibaba. ON LEARNING UNIVERSAL REPRESENTATIONS ACROSS LANGUAGES. ICLR 2021.

Models utilizing parallel data seem to generate more language agnostic representations

In terms of downstream tasks, retrieval tasks gain the most – gains are modest for other tasks

Finetuning Strategies

Translation Baselines

Translate-Train

Multi-language Fine-tuning

Chinese Test Data

language number	XNLI-en Acc[%]	XNLI-ar Acc[%]	XNLI-es Acc[%]	XNLI-fr Acc[%]	XNLI-ru Acc[%]	XNLI-zh Acc[%]	average Acc[%]
1	85.1	76.7	81.1	80.0	77.9	79.4	80.0
2	85.2	77.5	81.5	80.0	77.6	80.0	80.3
6	85.3	77.9	81.5	80.4	78.8	79.9	80.6
15	85.6	78.2	82.3	81.1	79.7	80.5	81.2

Translate-Train-All

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW
Zeroshot	85.1	79.0	79.4	77.8	77.2	77.2	76.3	72.8	73.5	76.4	73.6	76.2	69.4	69.7
Translate-Train	85.1	80.0	81.1	79.9	77.7	80.2	77.9	75.3	76.7	76.4	75.2	79.4	71.8	71.8
Translate-Train-All	85.6	81.1	82.3	80.9	79.5	81.4	79.7	76.8	78.2	77.9	77.1	80.5	73.4	73.8

Chinese Training Data (Translated From English) ...

English Training Data

French Training Data (Translated From English)

German Training Data

German Training Data (Translated From English)

Translating all training data works best

Above results on Unicoder for XNLI

Finetuning Scenarios

Zeroshot Learning

Adapters

Multilingual adapters

Pfeffer et al. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. EMNLP 2020.

Adapter layer

Limited capacity to share amongst multiple languages

- Low-resource language don't get enough representation
- Performance on high resource languages suffers

Introduce small adapter networks for specific languages/tasks

- Better utilization of model capacity
- Adapt the model to new languages
- Parameter efficient adapters

Train baseline model

- → Freeze parameters
- → Introduce adapter modules
- → Finetune adapter parameters

adapter-transformers + Adapter Hub: <u>https://adapterhub.ml</u>

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models

Mining Task-specific Datasets

In-language datasets are always useful \rightarrow expensive to create

Transfer learning does not work well for some problems. POS tagging, NER, etc.

Can datasets be mined from public sources?

Parallel Corpus Mining from Machine Translation

Mining NLU/NLG Datasets

Creativity is the limit for mining data of different kinds!

HEADLINE GENERATION

INDICTRANS

Mining Named Entities

Yarowsky, D., Ngai, G., and Wicentowski, R. (2001). Inducing multilingual text analysis tools via robust projection across aligned corpora. In Proceedings of the first International Conference on Human language technology research.

Summary

- Large model, large data, correct parametrization of models helpful
- Transfer learning works best between related languages
- Use of parallel data, sentence-level objectives to improve representation alignment
- Effect of parallel data
 - Retrieval tasks improve
 - Other tasks do not improve as much
 - Helpful for languages with different scripts
- Translate-train-all performs very well
- Have *expert* model components can improve performance
- Mine in-language data where you can \rightarrow very useful

Multilingual NLG

Introduction

- Multilingual extension to pre-trained NLG models
- Supporting tasks like Machine Translation, Summarization, Free-form Question Answering, Grammar Correction, Paraphrasing, etc.
- Desired Model Capabilities
 - Joint models for multiple languages
 - Transfer learning for low-resource scenarios
 - Zero-shot model performance
 - Cross-lingual tasks e.g. document in one language, summary in another
- Generation stage needs to balance between
 - Language agnostic representation
 - Language specific surface realization

Encoder-Decoder Models: mBART/mT5

Additional Objectives(1) MLM on encoder side(2) Cross-lingual MLM & DAE objectives

- Simple modification to mBERT training -> Jointly train monolingual Denoising Auto-Encoder (DAE) objective
- Target language tag: Special token as input to identify target language to generate. Token can be:

(1) In the input stream OR (2) initial "forced" decoder output

• Source language tag: input sequence (optional)

Liu et al., Multilingual denoising pre-training for neural machine translation. TACL. 2020.

Xue et al. *mT5: A massively multilingual pre-trained text-to-text transformer.* 2020. <u>https://arxiv.org/abs/2010.11934</u>

Chi et al. Cross-Lingual Natural Language Generation via Pre-Training. AAAI 2020.

Cross-lingual Representations

- Encoder and decoder representations become more language agnostic in higher layers
- English representations differ depending on the language on the other side
 - Encoder-decoder representation boundary is blurry

Decoder Models: BLOOM/xGLM/AYA/GPT

- Simple modification to mBERT training →
 - Jointly train Causal Language Modeling/Next word prediction objective
- Standard Architecture for LLMs
- Target language tokens not used for generation
- Flexible instruction following capabilities used to specify target language in prompt
- Consideration: English data far outstrips data from other languages

Multilingual LLMs

- Very few multilingual LLMs
- Most LLMs are very English heavy
 - Focus on English
 - English data far outstrips LLMs for other languages

Limited tokenizer representation for most non-English languages

Fertility → number of tokens per word High fertility → low-efficiency, suboptimal representations

6.1Wikipedia Size (in million articles) (Xfactr) 2.2 $1.6 \quad 1.5 \quad 1.2 \quad 1.2 \quad 1.1$ fr vi zh hu en nl ru es ip ko $0.1 \quad 0.09 \quad 0.09 \quad 0.07 \quad 0.06 \quad 0.04 \quad 0.03 \quad 0.03 \quad 0.02$ 0.2tl el war mr mg bn SW pa ceb yo ilo

(BUFFET, MEGA, ChatGptMT)

- Do English-heavy LLMs have any non-English capabilities? How?
- Prohibitively expensive to train multilingual LLMs from scratch, is it possible to extend English LLMs to new languages?

Do English LLMs have some inherent multilingual capabilities?

Yes, to some extent ...

Why? – during training they might have been exposed to some non-English data

- Documents with multiple languages
- Incorrect LID

How good are the multilingual capabilities?

- Might be ok at language understanding *e.g. classification, sentiment analysis*
- Bad at generation
- Better on Latin script languages
- Languages with better pre-training representation perform better

How do English LLM achieve multilingual capabilities?

- Do LLMs think in English?
- Do LLM use English as a pivot for decision making?

Bottom layers: Feature learning

Middle layers: Concept mapping to language tokens (with English bias)

Top layers: Language generation in target language

There are language-specific neurons

The central question in building multilingual LLM is to bring representations of English and other languages closer to achieve good cross-lingual transfer

(LmaLatent,PNLD,LSP)

Extending English LLMs to Non-English Languages

Build custom language (group) specific collections to address gaps

What if vocabulary is under-represented?

<s> Gaganyaan is an Indian crewed orbital spacecraft intended to be the formative spacecraft of the Indian Human Spaceflight Programme.

<s> गगनयान <0xE0><0xA4><0x8F>क भारतीय चालक दल कक्षीय अंतरीक्ष यान है जिसका <0xE0><0xA4><0x89>द्देश् य भारतीय मानव अंतरीकर्ष <0xE0><0xA4><0x89>ड़ान कार्यकरम का प्रारंभिक अंतरीकर्ष यान होना है।

Fertility = Average number of tokens per word

High Fertility \rightarrow More memory consumption, more decoding time, limit on longest processable sequence

Model	Hindi Fertility
GPT4	5.32
Llama2	5.83
Mistral	5.60
BLOOM	1.38

How to extend tokenizer vocabulary?

Train on document-level data

Finetuning on long, coherent sequences helps model learn and correlate different pieces of knowledge

To avoid forgetting English competence and knowledge

• Include English in the pre-training data

To align English and new language

- Pre-train on parallel data
- Pre-train using romanized data
- (ChineseLLama, OpenHathi,RomanSetu,IndicMonoDoc,Tower,Palm2)

Train on in-language IFT dataset

 $\ell_{\rm CE}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{|\mathcal{V}|} y_j \log(\hat{y}_j) \qquad \mathcal{L}_{\rm SFT} = \frac{1}{N} \sum_{i=1}^N \ell_{\rm CE}(\mathbf{y}_i, \mathcal{M}_{\theta}(\mathbf{x}_i))$

Sources of IFT dataset Quality and diversity of IFT dataset

To retain English task performance

• Include English in the IFT training

Instruction Tuning Tasks

Variety of tasks/objectives to improve non-English performance

- English Data IFT (SDRRL)
- In-language IFT with Machine Translated Data (Airavat, Okapi)
- Locally/Culturally relevant IFT data (SeaLLM, IndicLLMSuite)
- Parallel Data
- Monolingual Data (SDRRL)
- Romanized IFT Data (RomanSetu)
- Cross-lingual Thought Data (PLUG)
- Cross-lingual IFT Data (SDDRL)
- Code-switched IFT Data

Let's look at some of these tasks in detail

Transforming IFT Datasets

Auxiliary Tasks

Generating IFT Data

Cross-Lingual Thought data

Limitations

- Reduced maximum sequence length
- Increased latency

	Standard IFT	ТаСо
Nepali	39.3	88.1
Persian	46.5	83.9

Evaluation on translated Vicuna Benchmark with GPT4

(TaCo,PLUG)

The PLUG paper also shows improvements (discussed later)

Cross-Lingual Instruction Tuning

 Q_{hi} : मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे 5 संक्षिप्त बिंदु दीजिये।

 A_{en} :

- 1. Prioritize tasks based on importance and urgency.
- 2. Set specific goals with deadlines (SMART goals).
- 3. Use time management tools like calendars and apps.
- 4. Minimize distractions to maintain focus.
- 5. Regularly review and adjust your schedule for better efficiency.

Cross-lingual instruction help the model to align languages and think in English

Avoids intermediate English generation of Cross-lingual Thought Prompting

(SDDRL,XCOT,CIT)

Romanized Representation

Just like pre-training, use romanized representation for IFT too

MT xx-en (chrF)

IndicXTREME

(F1)

- Continual Pre-training with romanized data is crucial
- NLG task performance improves with romanized data
- NLU task performance is on par, though more efficient

(RomanSetu)

BaseLLM (N)

BaseLLM (R) CPT (N)

Agenda

- Introduction
- Typical Multilingual NLP Pipeline
- Cross-lingual Transfer
- Multilingual Word Embeddings
- Multilingual Pre-trained Language Models
 - Extending English LLMs to new languages
- Finetuning Pre-trained LMs
- Evaluation of Multilingual models
Benchmarks for Multilingual Learning

XTREME

Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark

Table 1. Characteristics of the datasets in XTREME for the zero-shot transfer setting. For tasks that have training and dev sets in other languages, we only report the English numbers. We report the number of test examples per target language and the nature of the test sets (whether they are translations of English data or independently annotated). The number in brackets is the size of the intersection with our selected languages. For NER and POS, sizes are in sentences. Struct. pred.: structured prediction. Sent. retrieval: sentence retrieval.

Task	Corpus	Train	Dev	Test	Test sets	Lang.	Task	Metric	Domain
Classification	XNLI PAWS-X	392,702 49,401	2,490 2,000	5,010 2,000	translations translations	15 7	NLI Paraphrase	Acc. Acc.	Misc. Wiki / Quora
Struct. pred.	POS NER	21,253 20,000	3,974 10,000	47-20,436 1,000-10,000	ind. annot. ind. annot.	33 (90) 40 (176)	POS NER	F1 F1	Misc. Wikipedia
QA	XQuAD MLQA TyDiQA-GoldP	87,599 3,696	34,726 634	1,190 4,517–11,590 323–2,719	translations translations ind. annot.	11 7 9	Span extraction Span extraction Span extraction	F1 / EM F1 / EM F1 / EM	Wikipedia Wikipedia Wikipedia
Retrieval	BUCC Tatoeba	-	-	1,896–14,330 1,000	-	5 33 (122)	Sent. retrieval Sent. retrieval	F1 Acc.	Wiki / news misc.

Task Difficulty, Task Diversity, Language Diversity, Sufficient Monolingual data, Efficiency, Accessibility

40 languages, 12 language families, 9 tasks, 4 task types

NLG Benchmarks

IndicNLG Benchmark

5 datasets in 11 Indian languages

Aman Kumar, Himani Shrotriya, Prachi Sahu, Raj Dabre, Ratish Puduppully, Anoop Kunchukuttan, Mitesh M. Khapra, Pratyush Kumar. *IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages*. arxiv preprint 2203.05437. 2022.

Dataset	Languages	Communicative Intent	Input Type	Total Size
Biography Generation	as, bn, hi, kn,	One-sentence biogra-	key-value pairs	55K
	ml, or, pa, ta, te	phies		
Headline Generation	as, bn, gu, hi,	News article headlines	news article	1.43M
	kn, ml, mr, or,			
	pa, ta, te			2 · · · · · ·
Sentence Summarization	as, bn, gu, hi,	Compacted sentence	sentence	431K
	kn, ml, mr, or,	with same meaning		
	pa, ta, te			
Paraphrase Generation	as, bn, gu, hi,	Synonymous sentence	sentence	5.57M
	kn, ml, mr, or,			
	pa, ta, te		-	
Question Generation	as, bn, gu, hi,	Question leading to an-	context-answer	1.08M
	kn, ml, mr, or,	swer given context	pairs	
	pa, ta, te			

MTG Benchmark

4 datasets in 5 languages

Task	Corpus	Domain	Format	Goal
Story Generation	ROCStories	Daily life	<story></story>	Generate the end of the story
Question Generation	SQUAD 1.0	Wikipedia	<passage,answer, question=""></passage,answer,>	Generate the question of the answer
Title Generation	ByteCup	News	<article, title=""></article,>	Generate the title of the document
Text Summarization	CNN/DailyMail	News	<article, summary=""></article,>	Generate the summary of the document

Yiran Chen, Zhenqiao Song, Xianze Wu, Danqing Wang, Jingjing Xu, Jiaze Chen, Hao Zhou, and Lei Li. 2022. MTG: A Benchmark Suite for Multilingual Text Generation NAACL-Findings. 2022

GEMv2 Benchmark

GEMv2 aggregates 40 documented datasets in 51 languages

Sebastian Gehrmann, Abhik Bhattacharjee et al.. *GEMv2: Multilingual NLG Benchmarking in a Single Line of Code. Arxiv 2206.11249. 2022*

Machine Translation Benchmarks

- FLORES-200
- NTREX
- BPCC-IN22

Dataset	Citation	Task	Language(s)
ART	(Bhagavatula et al., 2020)	Reasoning	en
BiSECT	(Kim et al., 2021a)	Simplification	en, de, es, fr
Cochrane	(Devaraj et al., 2021)	Simplification	en
CommonGen	(Lin et al., 2020)	Data-to-Text	en
Conversational Weather	(Balakrishnan et al., 2019)	Response Generation	en
CrossWOZ	(Zhu et al., 2020)	Response Generation	zh
CS Restaurants	(Dušek and Jurčíček, 2019)	Response Generation	cs
DART	(Nan et al., 2021)	Data-to-Text	en
DSTC 10	(Kim et al., 2021b)	Data-to-Text	en
E2E NLG	(Novikova et al., 2017; Dušek	Data-to-Text	en
	et al., 2020; Dušek et al., 2019)		
FairytaleQA	(Xu et al., 2022)	Question Geneartion	en
IndoNLG	(Cahyawijaya et al., 2021)	Summarization	id, jv, su
MLB	(Puduppully et al., 2019a)	Data-to-Text	en
MLSum	(Scialom et al., 2020)	Summarization	es, de
Opusparcus	(Creutz, 2018)	Paraphrasing	de, en, fi, fr, ru, sv
OrangeSum	(Kamal Eddine et al., 2021)	Summarization	fr
RiSAWOZ	(Quan et al., 2020)	Response Generation	zh
RotoWire En-De	(Wiseman et al., 2017; Hayashi	Data-to-Text	en, de
	et al., 2019)		
Schema-Guided Dialog	(Rastogi et al., 2020)	Response Generation	en
SciDuet	(Sun et al., 2021)	Slide Generation	en
SIMPITIKI	(Tonelli et al., 2016)	Simplification	it
SportSett	(Thomson et al., 2020)	Data-to-Text	en
Squad V2	(Rajpurkar et al., 2016)	Question Generation	en
SQuALITY v1.1	(Wang et al., 2022)	Summarization	en
Surface Realization ST 2020	(Mille et al., 2020)	Data-to-Text	ar, en, es, fr, hi, in
			ko, ja, pt, ru, zh
TaskMaster	(Byme et al., 2019)	Response Generation	en
ТоТТо	(Parikh et al., 2020)	Data-to-Text	en
Turku Hockey	(Kanerva et al., 2019)	Data-to-Text	fi
Turku Paraphrase	(Kanerva et al., 2021)	Paraphrasing	fi
ViGGo	(Juraska et al., 2019)	Data-to-Text	en
WebNLG	(Gardent et al., 2017a,b)	Data-to-Text	en, ru
WikiAuto			
+ASSET/TURK/Split&Rephrase	(Jiang et al., 2020; Alva-	Simplification	en
	Manchego et al., 2020; Xu		
	et al., 2016; Zhang et al., 2020)		
WikiCatSum	(Perez-Beltrachini et al., 2019)	Summarization	en
WikiLingua	(Ladhak et al., 2020)	Summarization	ar, cs, de, en, es, fr,
			hi, id, it, ja, ko, nl,
			pt, ru, th, tr, vi, zh
XLSum	(Hasan et al., 2021)	Summarization	om, fr, am, ar, az, bn,
			cy, en, es, gd, fa,
			gu, ha, hi, ig, id, ja,
			ko, ky, mr, my, ne,
			ps, pcm, pt, pa, rn, ru,
			sr, si, so, sw, ta, te,
			th, ti, tr, uk, ur, uz,
			vi, yo, zh-CN, zh-TW
XSum	(Narayan et al., 2018)	Summarization	en
XWikis	(Perez-Beltrachini and Lapata,	Summarization	en, de, fr, cs
	2021)		

Multilingual LLM Benchmarks for Open-ended tasks

- Very few such benchmarks
- Some examples: covers only a few languages
 - Aya Evaluation Suite
 - MGSM for Math Problems
 - Multilingual MMLU from OpenAI
- Machine Translated versions of various English datasets are available
 - Vicuna, ALPACA, MMLU, ARC, Dolly

Evaluation Metrics

- Evaluation of text is a challenging task
- How good is an evaluation metric?
- Particularly, methods that are applicable to multiple languages
 - Morphology and grammar of languages vary
 - Resource available for building and meta-evaluating evaluation models vary
- Popular evaluation metrics
 - String-based: BLEU, ROUGE, chrF
 - Embedding-based: BERTScore
 - Learned Metrics: COMET, BLEURT
 - LLM as Judge: GEMBA, G-Eval, Prometheus, CIA

https://github.com/AI4Bharat/CIA

Summary

- Deep Learning has revolutionized multilingual representation learning
 - Word representations \rightarrow Pre-trained LM with monolingual objectives \rightarrow bilingual objectives
- Opened up possibilities
 - Multilingual training, Zero-shot performance, Compact models
 - Support low-resource languages and domains via transfer Learning
- Both multilingual NLU and NLG made possible
 - Multilingual NLG is more challenging
- Effectiveness of multilingual transfer depends on task complexity, language relatedness
- Efficient Multilingual Evaluation is a challenge

Resources

<u>Al4Bharat:</u> Resources and tools for Multilingual NLP for Indian languages

Survey Papers & Tutorials:

Sumanth Doddapaneni, Gowtham Ramesh, Anoop Kunchukuttan, Pratyush Kumar, Mitesh M. Khapra. A Primer on Pretrained Multilingual Language Models. 2021. <u>https://arxiv.org/abs/2107.00676</u>

Yuemei Xu, Ling Hu, Jiayi Zhao, Zihan Qiu, Yuqi Ye, Hanwen Gu. A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias. 2023. <u>https://arxiv.org/abs/2404.00929</u>

Raj Dabre, Chenhui Chu, Anoop Kunchukuttan. Multilingual Machine Translation. [Survey paper at ACM Computing Surveys 2020] [Tutorial at COLING 2020] [website]

Anoop Kunchukuttan. Extending English Large Language Models to New Languages: A Survey. 2024. <u>https://anoopkunchukuttan.gitlab.io/publications/presentations/extend_en_llms_aug2024.pdf</u> (upcoming tutorial at EMNLP 2025)

Anoop Kunchukuttan. Multilingual Learning. Tutorial at Summer School on Machine Learning. IIIT Hyderabad. 2018. https://anoopkunchukuttan.gitlab.io/publications/presentations/IIIT-Hyderabad-ML-Summer-School-2018.pdf

Thank You!

anoop.kunchukuttan@gmail.com

https://anoopkunchukuttan.gitlab.io/