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Parallel Corpus

Machine Learning

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine

Certains hommes regardent le tennis

A girl is holding a black book Une jeune fille tient un livre noir

Two men are watching a movie Deux hommes regardent un film

A woman is reading a  book Une femme est en train de lire un livre

A woman is sitting in a red car Une femme est assise dans une voiture rouge

Lets begin with a simplistic view of Statistical Machine Translation (SMT) !!!
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Machine Learning

• Learn word/phrase alignments
• Learning to reorder

Parallel Corpus

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine
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A girl is holding a black book Une jeune fille tient un livre noir
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A woman is reading a  book Une femme est en train de lire un livre

A woman is sitting in a red car Une femme est assise dans une voiture rouge

Lets begin with a simplistic view of Statistical Machine Translation (SMT) !!!
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SMT is by far the most popular machine translation paradigm
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Why is SMT so popular?

… because it is a language independent technology

What do we mean by language independent technology?
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“If technology developed for one language can be ported to another 
merely by amassing appropriate training data in the second language, 
then the effort put into the development of the technology in the first 
language can be leveraged to more efficiently create technology for 
other languages.”

- Emily Bender (2011) 

Indeed, by the above definition, SMT is a language independent technology, but….
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“If technology developed for one language can be ported to another 
merely by amassing appropriate training data in the second language, 
then the effort put into the development of the technology in the first 
language can be leveraged to more efficiently create technology for 
other languages.”

- Emily Bender (2011) 

but….need to focus on two practical considerations:
• Not just ported, it should work well!!
• How much is ‘appropriate’ ?
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Even though in theory SMT is language independent, in practice 
the situation is different ….
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HTER assessment language pairs and domains

0%

publishable French-English restricted domain

10% French-English technical document localization

editable French-English news stories

20%

English-German news stories

30% gistable English-Czech open domain

40% triagable

50%

Very few languages have high quality SMT systems!!

Source: Philip Koehn, Course slides
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Lets consider the case of English Malayalam SMT to understand
a few reasons for this ….
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Malayalam is a highly agglutinative, predominantly S-O-V language 

too many word forms

leads to data sparsity
(not enough counts for all word forms)

bad word/phrase alignments

harder reordering problem

Solution
- Add more parallel data
- More linguistic processing (morphological analysis, parsing, etc.)

Not possible for all languages

mazhA p.eyyutil.e~Ngillu.m
rain_NN rain_VB+not+even_if

Even if it does 
not rain
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A more practical definition of language independent technology should include:
• appropriate less or reusable data
• appropriate less or portable linguistic resources

Obviously, this cannot be achieved when porting SMT to arbitrary language pairs

But can this be achieved for some language pairs?
• Yes, for “related” languages

The focus of 
this tutorial 
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Lets consider the case of  Marathi  Hindi SMT to motivate this ….
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What’s so special about this language pair

Related by evolution

Belong to the same language family 

(Indo-Aryan branch of the IE language family)

Related by contact

Constant exchange between these languages

(Both are spoken in the Indian subcontinent)

… leading to linguistic similarities and prior knowledge that can be used

• Lexical: share significant vocabulary (cognates & loanwords)

• Morphological: correspondence between suffixes/post-positions

• Syntactic: share the same basic word order 
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En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारताच्या
स्वातंत्र्यदिनाननमित्त
अतेररकेतील
लॉस
एन्जल्स
शहरात
काययक्रत
आयोजजत
करण्यात
आला

India+of  

Independence_day+on_occasion_of  

America_in 

Los 

Angeles 

city+in  

program 

organized 

+verbalizer 

come+past

NAACL 2016 Tutorial 19



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

India

+of  

Independence

Day

+on_occasion_of  

America

in 

Los 

Angeles 

city

in  

program 

organized 

+verbalizer 

come+past

1. Segment the Marathi input 

NAACL 2016 Tutorial 20



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

India

+of  

Independence

Day

+on_occasion_of  

America

in 

Los

Angeles

city

in  

program 

organized 

+verbalizer 

come+past

1. Segment the Marathi input 
2. Transliterate Named Entities

भारत

अतरीका

लॉस
एन्जल्स

NAACL 2016 Tutorial 21



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

India

+of  

Independence

Day

+on_occasion_of  

America

in 

Los

Angeles

city

in  

program

organized

+verbalizer 

come+past

1. Segment the Marathi input 
2. Transliterate Named Entities
3. Transliterate Cognates and Loan words

भारत

स्वतंत्रता

अतरीका

लॉस
एन्जल्स
शहर

काययक्रत
आयोजजत

NAACL 2016 Tutorial 22



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

1. Segment the Marathi input 
2. Transliterate Named Entities
3. Transliterate Cognates and Loan words
4. Some more loan words

भारत

स्वतंत्रता
दिवस

अतरीका

लॉस
एन्जल्स
शहर

काययक्रत
आयोजजत
ककया

India

+of  

Independence

Day

+on_occasion_of  

America

in 

Los

Angeles

city

in  

program

organized

+verbalizer 

come+past
NAACL 2016 Tutorial 23



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

1. Segment the Marathi input 
2. Transliterate Named Entities
3. Transliterate Cognates and Loan words
4. Some more loan words
5. Translate function words

भारत
के
स्वतंत्रता
दिवस
के [    ] पर
अतरीका
के
लॉस
एन्जल्स
शहर
तें
काययक्रत
आयोजजत
ककया

India

+of  

Independence

Day

+on_occasion_of

America

in

Los

Angeles

city

in

program

organized

+verbalizer 

come+past
NAACL 2016 Tutorial 24



En: On the occasion of India’s Independence day, a program was organized in American city of Los Angeles

भारता
च्या
स्वातंत्र्य
दिना
ननमित्त
अतेररके
तील
लॉस
एन्जल्स
शहरा
त
काययक्रत
आयोजजत
करण्यात
आला

1. Segment the Marathi input 
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5. Translate function words
6. Translate remaining content words

भारत
के
स्वतंत्रता
दिवस
के अवसर पर
अतरीका
के
लॉस
एन्जल्स
शहर
तें
काययक्रत
आयोजजत
ककया
गया

India

+of

Independence

Day

+on_occasion_of

America

in

Los

Angeles

city

in

program

organized

+verbalizer 

come+past
NAACL 2016 Tutorial 25



Why is SMT between Marathi-Hindi different from English-Malayalam?

Machine Learning

• Learn word/phrase alignments
• Learning to reorder

They have the same basic word order 
The reordering  problem is almost non-existent
No parsing is required

Almost One-One correspondence between words
(cognates, loan words, function words)
Transformations at the sub-word level
Level of representation different 

Learning at this  level requires lesser data 
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“almost” one-to-one correspondence

- Function words  suffixes e.g. Hindi  Marathi 
- Function word mappings may not be unique

1) ghara + ca (of)   ghar + ka (of)
ghara + tIla (in)  ghar + ka (of)

2)     hi: raama ko aama pasanda hai
bn: raamera aama pachanda aache

Still need to resolve ambiguity for some content words

- Translations aren’t orthographically similar: hair: kesa
- False Friends: pAnI, panI

What language divergences still have to be resolved?
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Most translation requirements also involves related languages

Between related languages 

Related languages  ⇐⇒ Link languages (English, French, Spanish, Hindi, etc.)
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Focus of this tutorial:

• Define relatedness between languages
• Exploit relatedness between languages for SMT

• Between related languages
• Between a bunch of related languages and another language
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Tutorial Outline

• Introduction & Motivation

• Language Relatedness

• Translation within related languages

• Translation from related languages to another language

• Summary
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Let’s start by understanding … 

Language Relatedness
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How are languages related?

• Genetic Relation  Language Families

• Contact Relation  Linguistic Area 

• Linguistic Typology  Linguistic Universal 
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What does language relatedness imply for MT?

• Cognates (words of the same origin) 

• Similar phoneme set, makes transliteration easier 

• Similar grammatical properties
• morphological and word order symmetry makes MT easier

• Cultural similarity leading to shared idioms and multiwords
• hin: िाल तें कुछ काला होना (dAla me.n kuCha kAlA honA )
• guj: िाळ ता काईक काळु होवु (dALa mA kAIka kALu hovu)

Literal meaning: something black in the lentils

Idiomatic meaning: something fishy
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Language Families

Group of languages related through descent from a common ancestor,
called the proto-language of that family
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Basis of classification

Regularity of sound change is the basis of studying genetic relationships

Source: Eifring & Theil (2005)
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Genetically related languages are also geographically contiguous

Source: Wikipedia
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Languages are also related due to contact over a long period of time
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Consequences of language contact

• Borrowing of vocabulary   loanwords

• Adoption of features from other languages 

• Stratal influence

• Language shift
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Mechanisms for borrowing words (Eifring & Thiel, 2005)

Borrowing phonetic form vs semantic content

form content example

Direct loan Yes Yes Avatar, Guru (English) < Sanskrit/Hindi
Music (English) < musique (French)

Loanblend Partly Yes double kamrA (Hindi) < double room (Eng)
rajasva bajaTa (Hindi) < revenue budget (English)

Loan translation No Yes rajasva ghaTA (Hindi) < revenue budget (English)

Loan creation No Yes prashikshaNArthi (hindi) < trainee (English)

Loanshift No Yes Vidyut (org. lightning) < electricity (English)
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Adoption of Features from other languages

• Over a long period of sustained exchange, languages can come closer

• Creation of a Linguistic Area 

• Linguistic Area: A group of languages (at least 3) that have common 
structural features due to geographical proximity and language 
contact (Thomason 2000)

India Balkans

Standard Average European South East Asia
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An example: India (Emeneau, 1956; Subbarao, 2012; Abbi, 2012)

• Retroflex sounds: Not found in Indo-European outside Indo-Aryan family

• Vocabulary exchanges: IA  Dravidian as well as Dravidian  IA

• Echo words
• Generally meaning etc or things like this
• Hindi: cAya-vAya (cAya tea)
• Telugu: puli-guli (puli tiger)

and many more: Dative Subjects, Compound & Conjunct Verbs, etc. 

To the layperson, Dravidian & Indo-Aryan languages would seem closer to each other than 
English & Indo-Aryan
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What does language relatedness imply for MT?

• Cognates (words of the same origin) 

• Similar phoneme set, makes transliteration easier 

• Similar grammatical properties
• morphological and word order symmetry makes MT easier

• Cultural similarity leading to shared idioms and multiwords
• hin: िाल तें कुछ काला होना (dAla me.n kuCha kAlA honA )
• guj: िाळ ता काईक काळु होवु (dALa mA kAIka kALu hovu)

Literal meaning: something black in the lentils

Idiomatic meaning: something fishy
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Tutorial Outline

• Introduction & Motivation

• Language Relatedness

• Translation within related languages

• Translation from related languages to another language

• Summary
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Translation within related languages
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Let’s see how we can use the relatedness between 
languages to improve translation quality

X Y

X and Y are related to each other
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In this section, we focus on one key characteristic of related 
languages  - Lexical Similarity
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Lexically Similar Languages
(Many words having similar form and meaning)

• Cognates

• Loan Words

a common etymological origin

roTI (hi) roTlA (pa) bread

phala.m (te) pazha.m (ta) fruit

borrowed without translation

matsya (sa) matsyalu (te) fish

pazha.m (ta) phala (hi) fruit

• Named Entities

• Fixed Expressions/Idioms

do not change across languages

MWE with non-compositional semantics

dAla me.n kuCha kAlA honA (hi)
Something fishy

dALa mA kAIka kALu hovu (gu)

Let’s just call such words ‘orthographically similar’
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But, be warned of ……

False Friends: Similar spelling ; different meaning

• Different origin: pAnI (hi) [water] panI (ml) [fever]
• Semantic shift: bala means hair (hi, frequent sense) and

baLa means child (mr)

Short words:

jaLa  jAla
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Compare similarity of grapheme sequences
Hindi  अ ंं ध ंा प न Marathi आंं ध ळ ंे प ण ंा

a.mdhApana A.mdhLepNA

OR 

Compare similarity of phoneme sequences
ə n dʱ a p ə n             a n dʱ ɭ e p ə ɳ a
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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x: a.mdhApana   (Hindi)

y: A.mdhLepNA  (Marathi)

𝒑𝒓𝒆𝒇𝒊𝒙(𝒙, 𝒚) =
𝑙𝑒𝑛(𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑟𝑒𝑓𝑖𝑥(𝑥, 𝑦))

max(𝑙𝑒𝑛 𝑥 , 𝑙𝑒𝑛 𝑦 )

=
0

8
= 0

𝒋𝒂𝒄𝒄𝒂𝒓𝒅 𝒙, 𝒚 =
|𝑥 ∩ 𝑦|

𝑥 + 𝑦 − |𝑥 ∩ 𝑦|

=
4

10
= 0.4

𝒅𝒊𝒄𝒆 𝒙, 𝒚 =
2 × |𝑥 ∩ 𝑦|

𝑥 + 𝑦

=
8

14
= 0.57

𝒍𝒄𝒔𝒓(𝒙, 𝒚) =
𝑙𝑒𝑛(𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛_𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑥, 𝑦))

max(𝑙𝑒𝑛 𝑥 , 𝑙𝑒𝑛 𝑦 )

=
3

8
= 0.375

𝒏𝒆𝒅_𝒃(𝒙, 𝒚) = 1 −
𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦))

max(𝑙𝑒𝑛 𝑥 , 𝑙𝑒𝑛 𝑦 )

= 1 −
5

8
= 0.375

Variants:
• Use n-gram as basic unit (Inkpen et al,2005)

• Skip-gram based metric (Inkpen et al,2005)

• Similarity matrix to encode character similarity 
(Ristad, 1999; Yarowsky, 2001)

• LCSF metrics to fix LCSR preference for short words 
(Kondrak, 2005)
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Grapheme 
Phoneme conversion 

Map phonemes to 
phonetic features

Define phonetic 
similarity function

Align phoneme 
sequences

x = अ ंं ध ंा प न  a  n dh A  p a n
y = आंं ध ळ ंे प ण ंा  A n dh a L  e p a N A 

v(‘a’) =(vowel, long , back, open, not_rounded)
v(‘A’) =(vowel, short, back, open, not_rounded)

phonetic_sim(‘a’, ‘A’) = cosine(v(‘a’), v(‘A’))

a n  dh  A _  e  p  a  n _
A n  dh  a L   e  p a  N A      sim(x,y)=6.6
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Grapheme 
Phoneme conversion 

Map phonemes to 
phonetic features

Define phonetic 
similarity function

Align phoneme 
sequences

Some scripts are near phonetic (Brahmi-derived scripts in India) 

making grapheme  phoneme conversion straightforward
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Grapheme 
Phoneme conversion 

Map phonemes to 
phonetic features

Define phonetic 
similarity function

Align phoneme 
sequences

Feature Values

Basic Character Type vowel , consonant, nukta, halanta, anusvaara

Vowel Length short, long

Vowel Strength weak (a,aa,i,ii,u,uu), medium (e,o), strong (ai,au)

Vowel Status Independent, Dependent

Vowel – horizontal position front, back

Vowel – vertical position open, open-mid, close,close-mid

Vowel – Roundedness True, False

Consonant Type plosive, fricative, central approximant, lateral 

approximant, flap

Place of Articulation velar,palatal, retroflex, dental, labial

Aspiration True, False

Voicing True, False

Nasal True, False
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Grapheme 
Phoneme conversion 

Map phonemes to 
phonetic features

Define phonetic 
similarity function

Align phoneme 
sequences

Cosine similarity, Hamming, Distance, Handcrafted similarity 

matrices
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Grapheme 
Phoneme conversion 

Map phonemes to 
phonetic features

Define phonetic 
similarity function

Align phoneme 
sequences

Dynamic Programming, ALINE (Kondrak, 2000)
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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• Thresholding based on similarity metrics 

• Classification with similarity & other features
• Cognates/False Friends v/s Unrelated

• Cognates v/s False Friends

• Competitive Linking
• Similarity based greedy bipartite matching of source 

words to target cognate candidates
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Performance of individual measures
Thresholds were learnt using single 
feature classifier

Results of classification

• LCSR, NED are simple, effective 
measures

• n-gram measures perform well

• Classification gives modest 
improvement over individual 
measures on this simple task

Cognates/False Friends v/s Unrelated (Inkpen et al 2005)
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Classifier Accuracy

Baseline 63.75

OneRule 95.66

Naïve Bayes 94.84

Decision Trees 95.66

Dec Tree (pruned) 95.66

IBK 93.81

Ada Boost 95.66

Perceptron 95.11

SVM (SMO) 95.46

Similarity 
measure

Threshold Accuracy

IDENT 1 43.90

PREFIX 0.03845 92.70

DICE 0.29669 89.40

LCSR 0.45800 92.91

NED 0.34845 93.39

SOUNDEX 0.62500 85.28

TRI 0.0476 88.30

XDICE 0.21825 92.84

XXDICE 0.12915 91.74

BI-SIM 0.37980 94.84

BI-DIST 0.34165 94.84

TRI-SIM 0.34845 95.66

TRI-DIST 0.34845 95.11



Cognates v/s False Friends (Bergsma & Kondrak (2007))

Individual measures

Learning Similarity 

Classification

• More difficult task
• LCSR, NED are amongst the best measures
• Learning similarity matrices improves performance
• Classification based methods outperform other methods
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics

• Phoneme based metrics

• Putting these metrics to use

• Why focus on lexical similarity? 

(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?

• Augmenting Parallel corpus with lexically similar words

• Improve Word Alignment

• Transliterate lexically similar OOV words
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Improve Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Limitations of SMT

• No explicit notion of cognates, loanwords and named entities

• All morphological variants of words generally not found in parallel corpus

• Cannot decompose compounds

Consequences

• Sub-optimal word alignment

• Cannot translate unseen cognates and named entities

• Cannot translate morphological variants
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT

69NAACL 2016 Tutorial



Parallel Corpus

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine

Certains hommes regardent le tennis

A girl is holding a black book Une jeune fille tient un livre noir

Two men are watching a movie Deux hommes regardent un film

abundance abondance

acrobatic acrobatique

cabin cabine

tennis tennis

How does it help?
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Parallel Corpus

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine

Certains hommes regardent le tennis

A girl is holding a black book Une jeune fille tient un livre noir

Two men are watching a movie Deux hommes regardent un film

abundance abondance

acrobatic acrobatique

cabin cabine

tennis tennis

How does it help?

• Improves word alignment
(10% reduction in word alignment error 
rate)

• Improves vocabulary 
coverage

• Improves translation 
quality
(2% improvement in BLEU score as well 
qualitative improvement)
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Parallel Corpus

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine

Certains hommes regardent le tennis

A girl is holding a black book Une jeune fille tient un livre noir

Two men are watching a movie Deux hommes regardent un film

abundance abondance

acrobatic acrobatique

cabin cabine

tennis tennis

Some tips

• Focus on high recall in 
cognate extraction
(Kondrak et al, 2003; Onaizan, 1999)

• Replication of cognate 
pairs improves alignment 
quality marginally (Kondrak et 

al, 2003; Och & Ney, 1999; Brown et al, 
1993)

• Add multiple cognate pairs 
per line (Kondrak et al, 2003)

pAnI jala   nIra  pANI   jaLa   nIra
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Parallel Corpus

A boy is sitting in the kitchen

A boy is playing tennis Un garçon joue au tennis

A boy sitting on a round table Un garçon assis sur une table ronde

Some men are watching tennis

Un garçon est assis dans la cuisine

Certains hommes regardent le tennis

A girl is holding a black book Une jeune fille tient un livre noir

Two men are watching a movie Deux hommes regardent un film

abundance abondance

acrobatic acrobatique

cabin cabine

tennis tennis

Limitations

• Cannot align unseen 
cognate pairs

• Cannot translate unseen 
words

• Knowledge locked in 
cognate corpus is 
underutilized
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Lets see if we can overcome some of these limitations pertaining to 
unseen words

There will still be some unseen words which need to be handled
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Discriminative models allow incorporation of arbitrary features 
(Moore, 2005)

Orthographic features for English-French word alignment: (Taskar 

et al, 2005)

• exact match of words 

• exact match ignoring accents

• exact matching ignoring vowels

• LCSR 

• short/long word

• Similar features can be designed for other writing systems
Word Error Rates  of English-French word alignment task (Taskar et al, 2005)

7% reduction in alignment error rate

Using orthographic features for Word Alignment
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There will still be some unseen words which need to be handled
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words
• A different paradigm – character-level SMT
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Transliterating OOV words

• OOV words can be: 
• Cognates

• Loan words

• Named entities

• Other words

• Cognates, loanwords and named entities are orthographically similar

• Transliteration achieves translation

• Orthographic mappings can be learnt from a parallel 
transliteration/cognate corpus

• Can be mined from the parallel corpus (Sajjad et al., 2012; Kunchukuttan et al, 2015)
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Transliterating OOV words

•Two options

• Transliteration as a post-translation step

• Integrating transliteration into the decoder
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Transliteration as Post-translation step

Option 1: Replace OOVs in the output with their best transliteration

But first transliteration may not be correct!

Option 2: Generate top-k candidates for each OOV. Each regenerated 
candidate sentence is scored using an LM and the original features

Option 3: 2-pass decoding, where OOV are replaced by their transliterations 
in second pass input

Rescoring with LM & second pass use LM context to disambiguate among transliterations

Durrani et al (2014), Kunchukuttan et al (2015)
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Integrate Transliteration into the Decoder

• In addition to translation candidates, decoder considers all transliteration 

candidates for each word
• Assumption: 1-1 correspondence between words in the two languages

• monotonic decoding

• Translation and Transliteration candidates compete with each other

• The features used by the decoder (LM score, factors, etc.) help make a choice 

between translation and transliteration options

Durrani et al (2010),  Durrani et al (2014)
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Results (Hindi-Urdu Translation)

Hindi and Urdu are essentially literary registers of the same language. 
We can see a 31% increase in BLEU score

Durrani et al (2010)

Word shaantimeans peace  translate Word shaanti named entity  transliterate

Phrase-Based (1) (1) + Post-edit Xlit (1) + PB with in-decoder Xlit (3)

14.3 16.25 18.6
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Transliteration Post-Editing for Indian languages 
Kunchukuttan et al (2015)

% OOV decrease after transliterating untranslated words

• Transliterate untranslated words & rescore with LM and LM-OOV features (Durrani, et al. 2014)

• BLEU scores improve by up to 4%

• OOV count reduced by up to 30% for Indo-Aryan languages, 10% for Dravidian languages

• Nearly correct transliterations: another 9-10% decrease in OOV count  can potentially be obtained

Indo-Aryan Dravidian

Dravidian

Indo-Aryan
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The story so far….

Leverage Lexical Similarity by Adapting Word Level SMT…

So far so good…. 

But there are some shortcomings…
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Shortcomings of Adapting word-based methods 

• Additional resources and tools required
• Cognate corpus
• Transliteration corpus
• Word aligned corpus
• Morphological analyzers

• Not directly optimized for improving SMT performance

We are “retrofitting” a word-level system to incorporate lexical similarity
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Is word the right level of representation for translation? 

Explore sub-word units of representation for translation
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Roadmap for this section

• What is Lexical Similarity?

• How to identify lexically similar words?
• Grapheme based metrics
• Phoneme based metrics
• Putting these metrics to use

• Why focus on lexical similarity? 
(Or Adapting SMT for leveraging lexical similarity)
• Why adapt?
• Augmenting Parallel corpus with lexically similar words
• Use orthographic features for Word Alignment
• Transliterate lexically similar OOV words

• A different paradigm – character-level SMT
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Basic unit of translation  CHARACTER 

Transliteration for translation

Word-level Character-level (unigram characters)

hi रात ने श्यात को पुस्तक िी र ंा त _ न ंे _ श ं य ंा त _ क ंो _ प ंु स ं त क _ ि ंी
rAma ne  shyAma  ko  pustaka  dI r  A  ma _ n e    _ sh     y  A  ma _ k   o   _ p  u  s       ta  ka _ d I

mr राताने श्यातला पुस्तक दिली र ंा त ंा न ंे _ श ं य ंा त ल ंा _ प ंु स ं त क _ ि जं ल ंी

rAmAne  shyAmalA  pustaka  dilI r  A   m  A  n  e _ sh     y A ma  l   A  _ p u   s     ta  ka _ d i     l    I 

Gloss Ram+nom Shyam+acc book gave

English Translation Ram gave a/the book to Shyam 
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Why character-level SMT?

Primary  language divergences can be bridged by sub-word transformations 

• Spelling/pronunciation differences (Cognates, Loan words)

• Suffix sets & function words: mappings can be learnt for short sequences

cA → kA madhye → me.m (for Marathi  Hindi)

Konkani – Marathi 54.51

Punjabi – Hindi 68.00

Bulgarian – Macedonian 62.85

Danish – Swedish 63.39

Indonesian – Malay 73.54

LCSR as a measure of language relatedness
(computed at sentence level on a parallel corpus) 

High degree of character-level similarity between related languages 

An integrated framework tackling cognates, named entities, inflection, agglutination 90



Training Character level SMT

Use the same discriminative log-linear framework as Phrase-based SMT

… with some modifications  … 
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Modification 1: Handling sentence length issues during training 
Long sentences at character level   Inefficient Word alignment

(a) Limit sentence length  Loss of training corpus (Tiedemann, 2009)

(b) Phrase pairs from word-based model as corpus  Larger models (Vilar, 2007)

No distinct advantage of one model over another (Tiedemann, 2009)

Modification 2: Monotone decoding (Tiedemann, 2009)

Decode at 
char level

Convert to
word level 

Evaluate at
word level 

Adjust
Feature weights

Modification 3: Tuning  at word-level (Tiedemann, 2012)

MERT Tuning

92NAACL 2016 Tutorial



• Longer units of translation: character n-grams

• n>2 has not been useful

• Capturing larger context information  higher order LM and longer phrase-pairs

• Data sparsity a lesser issue

• Improves translation quality

• Combining word and character models useful 

• System combination 

• Merging phrase tables

• Filtering noisy entries in phrase tables improves quality

Further improvements to character-based SMT …

(Tiedemann, 2009; Nakov & Tiedemann, 2012; Tiedemann & Nakov, 2013)
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Can suffixes & function words  be translated?

94

kok: ह्या ककड्याचें खाशलेपण कळ्ळे उपरांत दिसता तांचो संवसारूय ककतलो तजेशीर आसा .
hyA kiDyAce.n khAshelapaNa kaLLe uparA.nta disatA tA.nco sa.nvasAruuya kitalo majeshIra AsA

mar: ह्या ककड्याची ववशषेता कळल्यानंतर दिसते तयांचे ववश्वरिेखील ककती तजेिार आहे .
hyA kiDyAcI visheShatA kaLalyAna.ntara disate tyA.nce vishvaradekhIla kitI majedAra Ahe .

gloss:  these  insects_of uniqueness  knowing_after see their  world_also how funny is

eng: After knowing the uniqueness of these insects, <we> realize how funny their world is.

Function words (which differ 
across related languages) can be 

learnt

Even content words which are 
not orthographically similar can 

be learnt



Is character-level SMT good for small corpora?

• Character-level SMT can outperform word-level when very little corpus is available

• With increased parallel corpus, the performance gap narrows

• The similarity between the source and target languages is also important

(Czech is not as close to Macedonian as others)
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Tutorial Outline

• Introduction & Motivation

• Language Relatedness

• Translation within related languages

• Translation from related languages to another language

• Summary
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X

Y

E

How can resources for a resource-
rich language Y, which is related to 
a resource-poor language X, help 
translation between X, and an 
unrelated language E?
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• Scenario can occur between 
unrelated languages too

• Does not necessarily leverage 
relatedness between languages

• Relatedness between X and Y 
will have to be leveraged

X

Y

E

Sufficient Parallel Corpus

X

Y

E

No or little Parallel Corpus

Y: bridge/pivot language

Scenarios based on corpus availability….

98NAACL 2016 Tutorial



Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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src-pvt Corpus pvt-tgt Corpus

Direct Sys: src-pvt Direct Sys: pvt-tgt 

Pivot Sys: src-tgt

Composition

in out
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Generated corpus will be noisy; quality would depend on:

(i) language divergence (ii) parallel corpus size 

Source-Pivot
Corpus

Pivot-Target 
MT System

Pivot-Source 
MT System

Pivot-Target
Corpus

Corpus A

Corpus B

Synthetic 
Corpus

Pivot 
sentences

Pivot 
sentences

Target 
sentences

Source 
sentences

Target 
sentences

Source 
sentences

concat

(Gispert & Marino, 2006)

Goal: Create a Pseudo Source-Target training corpus

103NAACL 2016 Tutorial



Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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(i)  L is number of features
(ii) λ’s are feature weights 
(iii) h’s are feature values 

(iv) sp, pt: src-pvt & pvt-tgt models

𝑡 = argmax
𝑡 ∈ 𝑇
 

𝑘=1

𝐿

λ𝑘
𝑠𝑝
ℎ𝑘
𝑠𝑝
𝑠, 𝑝 + λ𝑘

𝑝𝑡
ℎ𝑘
𝑝𝑡
𝑝, 𝑡Re-rank the m.n target language candidates 

by interpolating scores   

Source-Pivot 
MT System

Pivot-Target 
MT System

P1

P2

Pn-1

Pn

Ti,1

Ti,2

Tn,m-1

Tn,m

T
S

(Utiyama & Isahara, 2007)Top-n candidates
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Source-Pivot 
Model

Pivot-Target
Model

Intermediate
Source-Target

Model

Source-
Target
Model

Tune

(Utiyama & Isahara, 2007; Wu & Wang, 2007)

A P ? ?

B P ? ?

B Q ? ?

C Q ? ?

C P ? ?

A X 0.4 0.4

B X 0.6 0.8

B Y 0.8 0.9

C Y 0.2 0.1

X P 0.5 0.4

Y P 0.5 0.6

Y Q 1.0 1.0

Z R 1.0 1.0

src-pivot phrase table

pivot-tgt phrase table
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Criteria Pseudo-corpus Cascaded Triangulation

Ease of implementation Easy Easy Involved

Training Time Depends on time to decode time 
to created pseudo-parallel
corpus

No separate training High, due to the time 
required for merging

Decoding Time Low, just as much as a baseline 
PBSMT system

Very high, due to 
multiple decoding

High due to increase in 
model size

Model Size same order as PBSMT model of 
this size
training corpus size <=2*max(src-pvt,pvt-tgt) corpus

No new model created Blow-up due to the 
join during merge

Translation Accuracy could be comparable to 
cascaded model

taking top-n candidates 
better than top-1

best method

Comparison
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Catalan-English with Spanish as pivot

(cascaded)

(cascaded)

(synthetic)

(synthetic)

Source-Targe                  Direct              Triangulation        Cascading (n=15)   Cascading(n=1)

Case Study I

Marino & Gispert, 2006

Utiyama & Isahara, 2007

English as Pivot
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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• Scenario can occur between 
unrelated languages too

• Does not necessarily leverage 
relatedness between languages

• Relatedness between X and Y 
will have to be leveraged

X

Y

E

Sufficient Parallel Corpus

X

Y

E

No or little Parallel Corpus

Y: bridge/pivot language

Scenarios based on corpus availability….
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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• Char-based SMT 
effective with small 
corpora

• X  Y leg of pivot 
SMT may generate 
non-words

Character based SMT for X  Y 

Word-based SMT for Y  E

X→ E (% BLEU) X→ Y (% BLEU) OOV % 
char 
level  X E Y Direc

t
Pivot-
word

Pivot-
char

word-
level

char-
level

mk en
bs

20.74
12.48 18.64 14.22 24.82 1.00

bg 19.74 21.10 14.77 17.28 0.77

gl en es 5.76 13.2 16.02 43.22 50.70 1.36

ca en es 27.86 38.65 40.73 59.34 65.14 0.48

Case Study II (Tiedemann, 2012)

- Macedonian (X) is related to Bulgarian (Y) and Bosnian (Y)
- Galician (X) and Catalan (X) are related to resource rich Spanish (Y)
- X-Y corpus in thousands, while Y-E (English) corpus in millions
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Y1 E1

Y2 E2

Y3 E3

X1 E1

X2 E2

X3 E3

Y  E Parallel Corpus

X  E Pseudo-Parallel Corpus

Rewrite Y sentences into X

For each word in Y 

• No knowledge sources 
• Do Nothing: Pretend Y is X

• Transliteration or cognate pairs between Y and X 
• Transliterate Y into X

• Word and/or Phrase dictionary between Y and X 

• Parallel corpus with a third language Z
• Induce a word and/or phrase dictionary by pivoting via a 

third language

• Morphological analyzer for Y and X
• Generate morphological variants of X from stems in Y
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Case Study III (Wang 2012)

• Source rewriting performs better than 
system trained on a small X → E parallel 
corpus

• Rewriting of XY does not perform
• Done at decode time
• Training corpus more robust to noise

System BLEU %

Direct X → E (baseline) 18.67

Pretend Y is X 14.50

Rewriting of Y  X 

CN: word dictionary from pivot  19.50

(A) CN: word dictionary from 
pivot  + morph 

20.06

(B) CN: phrase dictionary from 
pivot + morph  

20.89

System Combination (A) + (B) 21.24

Adaptation of X  Y (decode time)

CN: word dictionary from pivot  17.22

X: Indonesian Bahasa, Y: Malay, E: English
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Now suppose we have a parallel corpus between X 
and E as well

X

Y

E

Sufficient Parallel Corpus

X

Y

E

No or little Parallel Corpus

Y: bridge/pivot language

How do we augment direct system with the pivot system?
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Can the pivot system improve the direct system?

S → P P → Ta b c

Improve lexical coverage

S → Ta ?

S → P P → T
a b d

S → Ta c

Unknown words More translation options 

Direct

Pivot

Improve Probability estimates
by combining feature values from both tables

Such combination may be useful 
for translation between related 

languages  too
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Is concatenating corpora better than pivoting in this scenario?
Nakov & Tiedemann, 2009 experiment when no adaptation is done: 
• Simple concatenation cannot be shown to be better
• Sophisticated concatenation is better
• No study for the case of adaptation 

Adaptation Method Simple Concat Balanced Concat Sophisticated Comb.

Pretend Y is X 18.49 19.79 20.10

CN: word dictionary from pivot  + morph 20.60 21.15 21.05

CN: word dictionary from pivot  + morph 21.01 21.31 20.98

System Combination 21.55 21.64 21.62

X: Indonesian Bahasa, Y: Malay, E: English

Case Study IV (Wang et al., 2012)
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Roadmap for this section

• Pivot based SMT

• Pseudo-Corpus Synthesis

• Cascading Direct Systems

• Model Triangulation

• Case Study I

• Leveraging relatedness in Pivot based SM

• Small XY corpus is available (Case Study II)

• No XY corpus is available (Case Study III)

• Augmenting Direct system with Pivot Based System
• Combine corpus

• Combine models

• Choice of pivot language
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Model 1: Direct model
Model 2: Pivot based model

Combining Model 1 & 2
• Fillup interpolation - Create a unified phrase table – start filling 

entries from models in order of priority (Dabre et al, 2015)

• Linear interpolation – Weighted combination of models (Wu & 
Wang,2009)

• Multiple decoding paths – Decoder searches over all phrase tables 
(Nakov & Ng, 2009 ; Dabre et al, 2015)
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• Not clear if any of the linear interpolation is better than other

• Performance of Fillup and linear interpolation cannot be distinguished

• MDP is clearly better than all interpolation schemes

(1): Priority (9:1 ratio for Direct:Bridge table), (2) Priority by BLEU score

Japanese-Hindi translation using various pivots

Case Study V (Dabre et al., 2015)
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Case Study VI (Paul et al., 2013)

Study Involving 22 diverse Europoean and Asian languages
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Case Study VI (Paul et al., 2013)

• There is no single “best” pivot language

• English good for 50.2% of language pairs

Non-English pivots

Closely related languages are generally 
good pivots

86% cases pivot language independent of 
data size
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What if we use Multiple Pivots ?

Fr-Es translation using 2 pivots Hi ←→ Ja translation using 7 pivots

Adding a pivot increases vocabulary coverage

The more the better, especially when the training corpora are small

System Ja→Hi Hi→Ja

Direct 33.86 37.47

Direct+best pivot 35.74 
(es)

39.49 
(ko)

Direct+Best-3 pivots 38.22 41.09

Direct+All 7 pivots 38.42 40.09

Source: Dabre et al (2015)Source: Wu & Wang (2007)
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X

Y

E

How can resources for a resource-
rich language Y, which is related to 
a resource-poor language X, help 
translation between X, and an 
unrelated language E?

Can Y also help reduce structural divergence between X and E?
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Consider English Marathi translation

Word order divergence:    English is SVO Marathi is SOV

The President of America visited India in June

amarIkece rAShTrapati jUnamadhye bhArata aale
America+of President             June+in India came

Hindi and Marathi are Indo-Aryan languages with the same word order
Dravidian languages also have the same word order

Can reordering solutions for English  Hindi  translation be  reused for:
English Marathi translation? 
English  Telugu    translation ?
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Source Reordering 

• Standard PBSMT cannot handle long-distance reordering

• Source Reordering: Change the word order of source side of the training corpus to match 
the target language word order prior to SMT training

• Source Reordering improves PBSMT:

• Longer phrases can be learnt

• Decoder cannot evaluate long distance reorderings by search in a small window

English The President of America visited India in June

Reordered America of The President June in India visited

Marathi amarIkece rAShTrapati jUnamadhye bhAratat aale
America+of President            June+in India+to came
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Generic reordering (Ramanathan et al 2008)

Basic reordering transformation for 
English→ Indian language translation

Hindi-tuned reordering (Patel et al 2013)

Improvement over the basic rules by 
analyzing En→ Hi translation output

Rule Based Source Reordering 
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Portable rules for En→ IL pairs
(Kunchukuttan, et al. 2014)

• Source reordering improves BLEU scores for 15% and 21% for source reordering system 
systems S1 and S2 respectively for all language pairs

• A single rule-base serves all major Indian languages

• Even Hindi-tuned rules perform well for other Indian languages as target

Indo-Aryan Dravidian

System hin urd pan ben guj mar kok tam tel mal

PBSMT 26.53 18.07 22.86 14.85 17.36 10.17 13.01 4.17 6.43 4.85

+generic
reordering (S1)

29.63 20.42 26.06 16.85 20.11 11.46 15.01 4.97 7.83 5.53

+Hindi tuned 
reordering (S2)

30.86 21.54 27.52 18.20 21.33 12.68 15.73 5.09 8.29 5.68
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Tutorial Outline

• Introduction & Motivation

• Language Relatedness

• Translation within related languages

• Translation from related languages to another language

• Summary
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Summary
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We discussed the following questions … 

• What is language relatedness & when is it useful for MT?

• Can translation between related languages be made more accurate?

• Can multiple languages help each other in translation?

• Can we reduce resource requirements?

• What concepts & tools are required for solving the above questions?
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What does it mean to say languages are related?

• Genetic relation → Language Families

• Contact relation → Linguistic Area

• Linguistic typology → Linguistic Universals
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Key characteristics of related languages

Lexical Similarity

Morphological correspondence 

Monotonic word-order

Leverage these similarities to 

 improve translation quality 
 reduce resource requirements 
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Orthographic and Phonetic Similarity to measure word similarity

Properties & similarities of the scripts involved useful for measuring 
orthographic similarity

Identification of loan words, cognates, false friends and named entity pairs
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Translation between related languages 

- Adapting word-level SMT to improve word alignments, lexical coverage, OOV handling

- Use sub-word level units of representation

- Implicit use of morphological correspondence and monotonic word order

- Assistance from multiple languages via use of pivot languages

Food for thought

- Translation between related languages is not just transliteration (Tsvetkov etal., 2015; Tsvetkov & Dyer, 2015)

- Relation between lexical similarity and translation accuracy

- Evaluation  Metrics for sub-word level transformations
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Translation between related languages & another language

• Assisting language to improve vocabulary coverage & translation confidence 

• Pivot based SMT to use corpus from a resource rich related language

• Source/Target rewriting: useful for related languages with little corpora

• Divergence between languages has to bridged

• Linguistic resources can be re-used among related languages
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Can  we reduce resource requirements?

• Lesser parallel corpora required for learning sub-word transformations

• Shared representation can be a powerful mechanism

• Resources can be re-used/ported between related languages
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Key Tools and Concepts

• Language Typology

• Phonetic Properties

• Phonetic & Orthographic similarity

• Cognate Identification

• Transliteration

• Confusion networks & Word 

lattices representations

• Pivot-based MT

• Combining  SMT models/outputs
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Related Work that might be of interest

• Study of Linguistic Typology

• Historical/Comparative Linguistics

• Mining bilingual dictionaries, named entities & parallel corpora

• Word alignment using bridge languages

• Rule-based and Example-based MT in the light of linguistic similarities

• Multilingual Neural Machine Translation

• Character-level Neural Machine Translation
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Tools & Resources
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Language & Variation

• Ethnologue: Catalogue of all the world’s living languages 
(www.ethnologue.com)

• World Atlas of Linguistic Structures: Large database of structural 
(phonological, grammatical, lexical) properties of languages 
(wals.info)

• Comrie, Polinsky & Mathews. The Atlas of Languages: The Origin and 
Development of Languages Throughout the World

• Daniels & Bright. The World’s Writing systems
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Tools

• Pivot-based SMT: https://github.com/tamhd/MultiMT

• System Combination: MEMT

• Moses contrib has tools for combining phrase tables

• Moses can take confusion network as input

• Multiple Decoding Paths is implemented in Moses
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Classification of Reading Material
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Language Relatedness: 1,7,15,16,49,53,56

Lexical Similarity: 9,18,20,22,23,24,29,31,32,46,63

Adapting word-level SMT 8,12,13,14,24,26,28,34,41,47,55,59,60

Character-level SMT 36,37,38,39,57,58

Pivot-based SMT 5,10,11,25,30,33,35,37,43,44,61,62,64,65,66

List of papers at the end



Thank You! 
Questions?
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