
An Introduction to
Moses & GIZA++ Toolsets

Anoop Kunchukuttan
anoopk@cse.iitb.ac.in

CS626

30 Jul 2013

mailto:anoopk@cse.iitb.ac.in

What is Moses?

 Most widely used phrase-based SMT framework
 'Moses' actually refers to the SMT decoder
 However, includes training, tuning, pre-processing tools, etc.
 Open-source, modular and extensible - developed primarily at

the University of Edinburgh

 Written in C++ along with supporting scripts in various
languages
 https://github.com/moses-smt/mosesdecoder

 Also supports factored, hierarchical phrase based, syntax
based MT systems
 Other decoders of interest: cdec, Joshua, ISI ReWrite

 Visit: http://www.statmt.org/moses/

30Jul-13 2

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
http://www.statmt.org/moses/
http://www.statmt.org/moses/

Recap: SMT basics

Generative Model
• Noisy channel model of

translation from sentence f to
sentence e.

• Task is to recover e from noisy f.

P(f|e): Translation model, addresses
adequacy

P(e): Language model, addresses fluency

Discriminative Model
• Maximum Entropy based model,

incorporating arbitrary features

 hi - features functions
(phrase/lexical direct/inverse
translation probability, LM
probability, distortion score)

 λi are weights of the features

GIZA++ : translation model params
SRILM: language model
ISI ReWrite: decoder

GIZA++,train_moses.perl : phrase,
lexical, distortion probabilities
SRILM: language model score
moses: decoder

30Jul-13 3

What does Moses do?

Moses
Training

SMT Model

moses.ini
Decoder

Parallel Corpus
(corpus.en,corpus.hi)

Source sentence

Target sentence

Target language
Corpus (mono.hi)

Language
Model

30Jul-13 4

Installing Moses

• Compile and install the following:
– Moses
– GIZA++
– Language Modelling toolkit (SRILM/IRSTLM)

• Installation Guides
– From StatMT: http://www.statmt.org/moses_steps.html
– Works best for Ubuntu: http://organize-

information.blogspot.in/2012/01/yet-another-moses-
installation-guide.html

– A bit older guide: http://www.cfilt.iitb.ac.in/Moses-
Tutorial.pdf

• Be ready for a few surprises !

30Jul-13 5

http://www.statmt.org/moses_steps.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://organize-information.blogspot.in/2012/01/yet-another-moses-installation-guide.html
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf
http://www.cfilt.iitb.ac.in/Moses-Tutorial.pdf

Workflow for building a phrase based
SMT system

 Corpus Split: Train, Tune and Test split

 Pre-processing: Normalization, tokenization, etc.

 Training: Learn Phrase tables from Training set

 Tuning: Learn weights of discriminative model on
Tuning set

 Testing: Decode Test set using tuned data

 Post-processing: regenerating case, re-ranking

 Evaluation: Automated Metrics or human evaluation

30Jul-13 6

Pre-processing -1 (Normalize the text)
Case normalization

• Recasing method:
– Convert training data to lowercase
– Learn recasing model for target language

 scripts/recaser/train-recaser.perl --dir MODEL --corpus CASED [--

ngram-count NGRAM] [--train-script TRAIN]

– Restore case in test output using recasing model
scripts/recaser/recase.perl --in IN --model MODEL/moses.ini --moses

MOSES >OUT

• Truecasing method
– Learnt via True casing model

scripts/recaser/train-truecaser.perl --model MODEL --corpus CASED

– Convert words at start of sentence to lowercase (if they generally occur in
lowercase in corpus)
scripts/recaser/truecase.perl --model MODEL < IN > OUT

– Restore case in test output using truecasing model
scripts/recaser/detruecase.perl < in > out

30Jul-13 7

Pre-processing -1 (Normalize the text)
 Character Normalization

Important for Indic scripts

• Multiple Unicode representations
– e.g. ज़ can be represented as +u095B or +u091c

(ज) +1093c (nukta)

• Control characters
– Zero-Width Joiner/Zero-Width Non-Joiner

• Characters generally confused
– Pipe character (|) with poorna-virama (।)

– Colon(:) with visarga (ः)

30Jul-13 8

Preprocessing-2 (Other steps)

• Sentence splitting

– Stanford Sentence Splitter

– Punkt Tokenizer (NLTK library)

• Tokenization

– Scripts/tokenizer/tokenizer.perl

– Stanford Tokenizer

– Many tokenizers in the NLTK library

30Jul-13 9

Train Language Model

• Supported LM tools:

– KenLM comes with Moses

– SRILM and IRSTLM are other supported language
models

• Can train with one and test with another LM

– All generate output in ARPA format

• Training SRILM based language model
ngram-count –order <n> –kndiscount -interpolate –text <corpus> -lm <lmfile>

30Jul-13 10

Training Phrase based model

• The training script (train-model.perl) is a meta-script which does the following:
– Run GIZA
– Align words
– Extract Phrases
– Score Phrases
– Learn Reordering model

• Run the following command

scripts/training/train-model.perl \

 -external-bin-dir <external_bin_dir>

 -root-dir <workspace_dir> \

 -corpus <train_path_without_ext> \

 -e <tgt_lang> -f <src_lang> \

 -alignment <phrase_extraction_strategy e.g. grow-diag-final-and> \

 -reordering <reordering_strategy e.g. msd-bidirectional-fe>

 -lm <lm_type, 0 for srilm>:<lm_order>:<lm_file>:0

30Jul-13 11

More Training Options

• Configure maximum phrase length

– -max-phrase-length

• Train the SMT system in parallel

• -parallel

• Options for parallel training

– -cores, -mgiza, -sort-buffer-size, -sort-parallel, etc.

30Jul-13 12

The phrase table
($workspace_dir/model/phrase-table.tgz)

• inverse phrase translation probability
• inverse lexical weighting
• direct phrase translation probability
• direct lexical weighting
• phrase penalty (always exp(1) = 2.718)
• Within-phrase alignment information

30Jul-13 13

The model file ($workspace_dir/model/moses.ini)

30Jul-13 14

Tuning the Model

• Tune the parameter weights to maximize
translation accuracy on ‘tuning set’

• Different tuning algorithms are available:
– MERT, PRO, MIRA, Batch MIRA

• Generally, a small tuning set is used (~500-1000
sentences)

• MERT (Minimum Error Rate Tuning) is most
commonly used tuning algorithm:
– Model can be tuned to various metrics (BLEU, PER,

NIST)
– Can handle only a small number of features

30Jul-13 15

MERT Tuning

• Command:
scripts/training/mert-moses.pl <tun_src_file>

<tun_tgt_file> <decoder_binary_path> \

 <untuned_model_file> --working-dir <workspace> --rootdir

<moses_script_dir>

• Important Options
– Maximum number of iterations. Default: 25

 --maximum-iterations=ITERS

– How big nbestlist to generate

 --nbest=100

– Run decoder in parallel
 --jobs=N

30Jul-13 16

http://mert-moses.pl/
http://mert-moses.pl/
http://mert-moses.pl/

Decoding test data

• Decoder command
bin/moses -config <moses_config> -input-file <input_file>

• Other common decoder options
– alignment-output-file <file>: output alignment information
– n-best-list: generate n-best outputs
– threads: number of threads
– ttable-limit: number of translations for every phrase
– xml-input: supply external translations (named entities,

etc.)
– minimum-bayes-risk: use MBR decoding to get best

translation
– Options to control stack size

30Jul-13 17

Evaluation Metrics

• Argument for validation of automated metrics: correlation
with human judgments

• Automatic Metrics:
– BLEU (Bilingual Evaluation Understudy)
– METEOR: More suitable for Indian languages since it allows

synonym, stemmer integration
– TER, NIST

• Commands
– Bleu scoring tool:
 scripts/generic/multi-bleu.perl
– Mteval scoring tool: official scoring tool at many workshops

(BLEU and NIST)
 scripts/generic/mteval-v13a.pl

30Jul-13 18

More Moses Goodies

• XML RPC server

• Binarize the phrase tables

• Load Phrase table on demand

• Experiment Management System (EMS)

• A simpler EMS

– https://bitbucket.org/anoopk/moses_job_scripts

• … continue exploring

30Jul-13 19

https://bitbucket.org/anoopk/moses_job_scripts

What is GIZA++?

• GIZA++ is a system for training word alignment
systems

• Uses of GIZA++:

– Building block for phrase based MT system

– Learning probabilistic lexicon from corpus

• Implementation of the IBM models

• GIZA++ does not contain a decoder

– Try using ISI Rewrite decoder

30Jul-13 20

Packages Needed to Run GIZA ++
(slides from : Bridget McInnes)

• GIZA++ package

• developed by Franz Och

• www-i6.informatik.rwth-aachen.de/Colleagues/och

• mkcls package

• developed by Franz Och

• www.-i6.informatik.rwth-aachen.de/Colleagues/och

30Jul-13 21

Step 1

•Create a parallel corpus: one sentence per line format

Retrieve data:

30Jul-13 22

Step 2

• Run plain2snt.out located within the GIZA++ package

•./plain2snt.out french english

• Files created by plain2snt

• english.vcb

• french.vcb

• frenchenglish.snt

Create files needed for GIZA++:

30Jul-13 23

Files Created by plain2snt

• english.vcb consists of:

• each word from the english corpus

• corresponding frequency count for each word

• an unique id for each word

• french.vcb

• each word from the french corpus

• corresponding frequency count for each word

• an unique id for each word

• frenchenglish.snt consists of:

• each sentence from the parallel english and french corpi translated
 into the unique number for each word

30Jul-13 24

Example of .vcb and .snt files

english.vcb:

2 Debates 4

3 of 1658

4 the 3065

5 Senate 107

6 (hansard) 1

frenchenglish.snt

1

2 3 4 5

2 3 4 5 6

1

…

french.vcb:

2 Debates 4

3 du 767

4 Senate

5 (hansard) 1

30Jul-13 25

Step 3

• Run _mkcls which is not located within the GIZA++ package

•mkcls –pengish –Venglish.vcb.classes

•mkcls –pfrench –Vfrench.vcb.classes

• Files created by _mkcls

• english.vcb.classes

• english.vcb.classes.cats

• french.vcb.classes

• french.vcb.classes.cats

Create mkcls files needed for GIZA++:

30Jul-13 26

Files Created by the mkcls package

• .vcb.classes files contains:

• an alphabetical list of all words (including punctuation)

• each words corresponding frequency count

• .vcb.classes.cats files contains

• a list of frequencies

• a set of words for that corresponding frequency

“A 99
“Canadian 82
“Clarity 87
“Do 78
“Forging 96
“General 81

…
82: … “Candian, “sharp, 1993, …
…
87: “Clarity, “grants, 1215 , …
…
99: “A, 1913, Christian, …

.vcb.classes.cats ex: .vcb.classes ex:

30Jul-13 27

Step 4

•Generate co-occurrence file

Sn2cooc.out french.vcb english.vcb frenchenglish.snt > fe.cooc

•Run GIZA++ located within the GIZA++ package

•./GIZA++ -S french.vcb –T english.vcb –C frenchenglish.snt –CoocurrenceFile fe.cooc

• Files created by GIZA++:

Run GIZA++:

• Decoder.config
• ti.final
• actual.ti.final
• perp
• trn.src.vcb
• trn.trg.vcb
• tst.src.vcb
• tst.trg.vcb
• a3.final
• A3.final

• t3.final
• d3.final
• D4.final
• d4.final
• n3.final
• p0-3.final
• gizacfg

30Jul-13 28

Files Created by the GIZA++ package

• Decoder.config

• file used with the ISI Rewrite Decoder

• developed by Daniel Marcu and Ulrich Germann

•http://www.isi.edu/licensed-sw/rewrite-decoder/

• trn.src.vcb

• list of french words with their unique id and frequency counts

• similar to french.vcb

• trn.trg.vcb

• list of english words with their unique id and frequency counts

• similar to english.vcb

• tst.src.vcb

• blank

• tst.trg.vcb

• blank

30Jul-13 29

http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/
http://www.isi.edu/licensed-sw/rewrite-decoder/

(cont) Files Created by the GIZA++ package
• ti.final

• file contains word alignments from the french and english corpus

• word alignments are in the specific words unique id

• the probability of that alignment is given after each set of numbers

• ex:

• 3 0 0.237882

• 1171 1227 0.963072

• actual.ti.final

• file contains word alignments from the french and english corpus

• words alignments are the actual words not their unique id’s

• the probability of that is alignment is given after each set of words

• ex:

• of NULL 0.237882

• Austin Austin 0.963072

30Jul-13 30

(cont) Files Created by the GIZA++ package
• A3.final

•matches the english sentence to the french sentence and give the match an
alignment score

• ex:

• #Sentence pair (1) source length 4 target length 5 alignment score : 0.000179693

 Debates of the Senate (Hansard)

 Null ({3}) Debats ({1}) du ({2}) Senat ({4}) (hansard) ({5})

• perp

• list of perplexity for each iteration and model

 #trnsz tstsz iter model trn-pp test-pp trn-vit-pp tst-vit-pp

 2304 0 0 Model1 10942.2 N/A 132172 N/A

• trns – training size

• tstsz – test size

• iter – iteration

• trn-pp – training perplexity

• tst-pp – test perplexity

• trn-vit-pp – training viterbi perplexity

• tst-vit-pp – test viterbi perplexity

30Jul-13 31

(cont) Files Created by the GIZA++ package
• a3.final

• contains a table with the following format:

• i j l m p (i / j, l, m)

•j = position of target sentence

• i = position of source sentence

• l = length of the source sentence

• m = length of the target sentence

• p(i / j, l, m) = is the probability that a source word in position i is moved to position j in a

pair of sentences of length l and m

• ex:

• 0 1 1 60 5.262135e-06

• 0 – indicates position of target sentence

• 1 – indicates position of source sentence

• 1 – indicates length of source sentence

• 60 indicates length of target sentence

• 5.262135e-06 – is the probability that a source word in position 1 is moved position 0 of

sentences of length 1 and 60

• d3.final – similar to a3.final with positions i and j switched
30Jul-13 32

(cont) Files Created by the GIZA++ package
• n3.final

• contains the probability of the each source token having zero fertility,
 one fertility, … N fertility

• t3.final

• table after all iterations of Model 4 training

•d4.final

• translation table for Model 4

• D4.final

• distortion table for IBM-4

• gizacfg

• contains parameter settings that were used in this training.

• training can be duplicated exactly

•p_03.final

• probability of inserting null after a source word

• file contains: 0.781958

30Jul-13 33

References

• Moses Manual (Your complete ref. to Moses)

• Hoang, Hieu, and Philipp Koehn. "Design of
the moses decoder for statistical machine
translation." Software Engineering, Testing,
and Quality Assurance for Natural Language
Processing. Association for Computational
Linguistics, 2008.

• NLTK

• Unicode Tutorial

30Jul-13 34

http://www.statmt.org/moses/manual/manual.pdf‎
http://nltk.org/
http://www.unicode.org/notes/tn23/Muller-Slides+Narr.pdf

