Extending English Large Language Models to New Languages *A Survey*

Anoop Kunchukuttan

Microsoft Translator

Al4Bharat

Version 2 (6th August 2024)

Outline

- Introduction to LLMs
- The Multilingual LLM Challenge
- Extending English LLMs
 - Vocabulary Expansion
 - Continued Pre-training
 - Instruction Tuning
- Summary & Future Directions

If you find this survey useful, please cite it in your work

@online{kunchukuttan2024extendllm, author = {{Anoop Kunchukuttan}}, title = {Extending English Large Language Models to New Languages: A Survey}, url = {https://anoopkunchukuttan.gitlab.io/publications/presentations/ex tend_en_llms_aug2024.pdf}, date = {6th August 2024}, urldate = {6th August 2024}

<u>BIBLIOGRAPHY</u> (identify paper by <u>PAPER_KEY</u> on the slides)

What are Large Language Models?

- Typically, transformer decoder models
- They generate text by looking at only previously generated text (*auto-regressive*)
- Trained on a self-supervised task
 - Next word prediction task
 - Large amount of text data
 - Large Models
- In-context learning capability

Instruction Tell me the sentiment of this review

Example The movie begins The plot is engaging, thoroughly enjoyable. The movie is great

Oh, how can such a fine cast produce such a terrible performance..... A total waste of time. The movie is **pathetic**

Prompt It is just a rehash of old movies The movie is <MASK>

(InstructGPT)

Finetuning on (relatively) small supervised and preference data to align instructions and values

Current LLMs vs. older generation (BERT/BART/XLM-R)

Current

- Every task is just text completion
- Decoder-only (NLU and NLG)
- In-context learning & Instruction Tuning
- Causal LM training objectives
- Large model size (GPT3: 175B params)
- Trained on large corpora (15T tokens LLama3)

Old Generation

- Classification/text generation
- Encoder-only (NLU), Enc-dec (NLG)
- Per-task finetuning
- Denoising objectives (MLM, DAE)
- Small models (largest mT5: ~13B)
- Modest amount of data (~BERT: 137B tokens)

What makes LLMs exciting?

- Inherent knowledge
- Multi-task abilities and taskcomposition
- Little task-specific training required
- Help in writing , creativity, brainstorming, data generation, explanation, *etc*.

https://arxiv.org/abs/2303.12712

https://www.youtube.com/watch?v=qblk7-JPB2c⁵

Prompt: Can you write a proof that there are infinitely **Prompt:** Draw a unicorn in TiKZ. many primes, with every line that rhymes?

GPT-4:

Maths

Explanations

Yes, I think I can, Though it might take a clever plan. I'll start by noting Euclid's proof, Which shows that primes aren't just aloof. Assume we have a finite list, Of primes, and that none have been missed. Multiply them all together, And add one, just to be clever. The result will be a number. That has no prime factors, oh wonder! But every number has a prime, That divides it, it's just a matter of time. So we've found a contradiction. And our finite list needs eviction. There must be infinitely many primes. And that's the end of my rhyming lines.s

Prompt: Can you generate a pyplot for the following data: $x = [1, 3, 5, 6, 8], y_1 = [2, 3, 5, 18, 1], y_2 = [3, 5, 6, 8, 1], y_3 = [5, 1, 2, 3, 4], y_4 = [9, 7, 2, 3, 1].$ I want y_1, y_2 to be in the same plot, but y_3 is in another plot next to that plot, y_4 is in below. I want the legend of y_1 to be "bob", y_2 to be "alice", y_3 to be "bibb", y_4 to be "alice". I want the the x-axis to be labeled with "time" and y axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4:

This is a conversation between a user and an artificial intelligence agent that follows instructions or answers questions. The AI always follows the instructions correctly.

User: Can you compose a short tune (say four to eight bars) using ABC notation? AI: There are many possible ways to compose a short tune in abc notation, but here is

one example: X:1

X.1 T:Example Tune M:4/4 L:1/8 K:C |:G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-G2z2 :| |:c2de f2ed | c2de f2f2 | g2fe d2cB | c4c2z2 :| This tune has two four-bar phrases, each repeated once, forming an A part and a B part. The key is C major.

GPT-4:

User: After the first bar G2AB c2BA, you chose G to start the next bar. Give an example of a change to the notes in the first bar that would have caused you to pick D instead of G as the first note in the second bar.

AI:One possible change to the notes in the first bar that would have caused me to pick D instead of G as the first note in the sec ond bar is:

|:G2AB c2Bc | ...

This change creates a stronger cadence on the C note at the end of the first bar, which is the fifth degree of the scale. This suggests a modulation to the dominant key of G major, which has D as its fifth degree. Therefore, starting the second bar with D would create a smooth transition to the new key and imply a harmonic progression of V-I.

Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8], y1 = [2, 3, 5, 18, 1], y2 = [3, 5, 6, 8, 1], y3 = [5, 1, 2, 3, 4], y4 = [9, 7, 2, 3, 1]. I want y1, y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in below. I want the legend of y1 to be "bob", y2 to be "allice", y3 to be "bilbo", y4 to be "allie". I want the *x*-axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Prompt:

struct mystruct_A { char a; int b; char c; } x; struct mystruct_B { int b; char a; char c; } y;

#include <stdio.h>

```
int main(void) {
    printf("Size of x: %zu bytes\n", sizeof(x));
    printf("Size of y: %zu bytes\n", sizeof(y));
    return 0;
```

Possible Output:

GPT-4:

There are different ways to implement and align structures in memory, so the exact output may vary depending on the compiler, platform, and options used. However, one possible output is:

Size of x: 12 bytes Size of y: 8 bytes

This output assumes that the compiler uses 4-byte alignment for structures, meaning that each structure member starts at an offset that is a multiple of 4 bytes from the beginning of the structure. This may result in some padding bytes being inserted between or after the members to maintain alignment. For example, in x, there may be 3 padding bytes after a and 3 padding bytes after c, while in y, there may be no padding at all. The size of a structure is the sum of the sizes of its members plus any padding bytes.

Understanding Programs

Plotting

Explosion of LLMs ... but mostly limited to English

Benefits of LLMs are mostly limited to English

Languago	Cat				
Language	Cal.	(en)	(spc)		
English	Н	70.2	70.2		
Russian	Н	60.8	45.4		
German	Η	64.5	51.1		
Chinese	Η	58.2	35.5		
French	Η	64.8	42.2		
Spanish	Η	65.8	47.4		
Vietnamese	Η	55.4	44.8		
Turkish	М	57.1	37.1		
Arabic	Μ	55.3	22.3		
Greek	Μ	55.9	54.5		
Thai	Μ	44.7	11.5		
Bulgarian	Μ	59.7	44.6		
Hindi	Μ	48.8	5.6		
Urdu	L	43.7	6.3		
Swahili	Х	50.3	40.8		

Language

English

Russian

German

Chinese

Japanese

French

Spanish

Italy

Dutch

Polish

Arabic

Hindi

Urdu

Swahili

Average

Portugese

Vietnamese

ChatGPT

(en) (tgt)

H 75.0 75.0

H 50.2 53.5

H 52.6 61.0

H 50.2 42.5

H 41.9 43.0

H 50.5 61.7

H 53.3 62.5

H 50.6 55.9

H 52.9 60.4

H 35.2 51.1

H 49.5 59.2

H 42.3 47.9

M 49.4 47.3

M 41.1 38.6 L 34.7 24.5

X 35.6 46.6

47.8 51.9

Code Cat.-

en

ru

de

zh

jp

fr

es

it

nl

pl

pt

vi

ar

hi

ur

SW

Languaga	uago Cat		ChatGPT(en)		
Language	Cal.	EM	F1		
English	Н	56.0	74.9		
Russian	Н	30.2	49.1		
German	Н	45.9	65.8		
Chinese	Н	37.1	42.3		
Spanish	Н	41.8	65.8		
Vietnamese	Н	36.1	57.3		
Turkish	Μ	34.5	56.4		
Arabic	Μ	32.0	50.3		
Greek	Μ	29.7	45.0		
Thai	Μ	31.2	43.4		
Hindi	Μ	17.5	37.8		
Average		35.6	53.5		

Results	on	Xq	uad	QnA

	#langs.	avg. chrF	avg. BLEU
ChatGPT (0-shot)	203	32.3	16.7
ChatGPT (5-shot)	203	33.1	17.3
GPT-4	20	44.6	24.6
NLLB	201	45.3	27.1
Google	115	52.2	34.6

Performance on translation averaged across languages

	Chat	GPT	NLI	LB
Lang.	BLEU	chrF	BLEU	chrF
srp_Cyrl	1.36	3.26	43.4	59.7
kon_Latn	0.94	8.50	18.9	45.3
tso_Latn	2.92	15.0	26.7	50.0
kac_Latn	0.04	2.95	14.3	37.5
nso_Latn	3.69	16.7	26.5	50.8
jpn_Jpan	28.4	32.9	20.1	27.9
nno_Latn	37.1	58.7	33.4	53.6
zho_Hans	36.3	31.0	26.6	22.8
zho_Hant	26.0	24.4	12.4	14.0
acm_Arab	28.2	44.7	11.8	31.9

Performance on translation High vs low resource

- Significant gap between English and other languages on multiple tasks
- High-resource and Latin script languages can give good performance on GPT
- Poor performance on low-resource languages
- Translate-test is a strong baseline
- Open-source models lag behind GPT models
 → they are very English heavy

(BUFFET, MEGA, ChatGptMT, ChatGptMLing) ⁸

Results on

Results on XNLI

X-CSQA

Why do LLMs lag behind for other languages?

- Lack of
 Pre-training data
 - Token representation
 - Instruction tuning data
 - Human preference data
- Inability to transfer from English
- Limitations of Translate-Test

Most LLMs trained on <10% non-English data

Fertility → number of tokens per word High fertility → low-efficiency, suboptimal representations

(BUFFET, MEGA, ChatGptMT)

Do English LLMs have some inherent multilingual capabilities?

Yes, to some extent ...

Why? – during training they might have been exposed to some non-English data

- Documents with multiple languages
- Incorrect LID
- Increasingly some representation of non-English data e.g. Gemma2, LLama3

How good are the multilingual capabilities?

- Might be ok at language understanding e.g. classification, sentiment analysis
- Bad at generation
- Better on Latin script languages
- Languages with better pre-training representation perform better

How do English LLM achieve multilingual capabilities?

- Do LLMs think in English?
- Do LLM use English as a pivot for decision making?

Bottom layers: Feature learning

Middle layers: Concept mapping to language tokens (with English bias), task solving

Top layers: Language generation in target language

There are language-specific neurons (mainly concentrated in the top and bottom layers)

The central question in building multilingual LLM is to bring representations of English and other languages closer to achieve good cross-lingual transfer

(LmaLatent, PNLD, LSP, Sharing Neurons)

Output	文	:	_"	花
31	文		_"	花
29	文		_"	花
27	文		_flower	花
25	文		_flowe	_flowe
23	文		_"	_flowe
21	文	:	_flowe	_flowe
19	文	:	_"	_flowe
17	eval	:	_"	<0xE5>
15	ji	:	_"	Ψ
15 13	ji ĭ	: vac	_" ols	Ψ bore
15 13 11	ji ĭ eda	: vac eda	_" ols _Als	Ψ bore abei
15 13 11 9	ji ĭ eda eda	: vac eda ná	_" ols _Als _Als	Ψ bore abei hel
15 13 11 9 7	ji ī eda eda iser	: vac eda ná arie	_" ols _Als _Als	Ψ bore abei hel arias
15 13 11 9 7 5	ji ĭ eda eda iser npa	: vac eda ná arie orr	_" ols _Als _Als ◀	Ψ bore abei hel arias arias
15 13 11 9 7 5 3	ji ī eda eda iser npa 心	: vac eda ná arie orr ures	_" ols _Als _Als _ Als _ Bedeut	Ψ bore hel arias arias arias arda
15 13 11 9 7 5 3 1	ji ī eda eda iser пра ்ட்	: vac eda ná arie orr ures 化	_" ols _Als _Als ∢ Bedeut Portail	Ψ bore abei hel arias arias arda Kontr

Open-source Multilingual LLM Efforts

Trained from scratch: BLOOM, mGPT, PolyLM, EAGLE, mT0, XGLM, AYA

- English representation is lesser compared to models like Llama, Gemma, Mistral → limited English capabilities
- Cannot expect good non-English capabilities either
- Large-scale compute needed for training

Focus of this survey

Extending English LLMs: ChineseLLama, OpenHathi, SeaLLM, ALMA, RomanSetu

- Strong English capabilities of base LLMs
- Less compute-requirements
- English LLMs are at the cutting edge with regular updates

Extending English LLMs to Non-English Languages

Vocabulary Expansion

<s> Gaganyaan is an Indian crewed orbital spacecraft intended to be the formative spacecraft of the Indian Human Space<mark>flight</mark> Programme.

Vocabulary: Set of tokens (basic I/O units)

LLM Vocabulary Properties

- Finite vocabulary size
- Subword units: basic units are smaller than words
- Open vocabulary: all words can be defined as concatenation of subwords

What if vocabulary is under-represented?

<s> गगनयान <0xE0><0xA4><0x8F>क भारतीय चालक दल कक**्षीय अंतर**िक**्ष यान ह**ै ज**िसका <0xE0><0xA4><0x89>द**्देश् य भारतीय मानव अंतरिक**्ष <0xE0><0xA4><0x89>ड**़ान कार**्यक**्रम का प**्रारंभ**िक अंतररिक**्ष यान ह**ोना है।

Fertility = Average number of tokens per word

Unknown characters (BPE-based vocab)	UNK vocab item
Fallback to known characters (BPE-based vocab)	High Fertility
Fallback to bytes (Byte BPE-based vocab)	Even Higher Fertility

More memory consumption

More decoding time

Limit on longest processable sequence

Addressing Vocabulary issues

Status-quo (use suboptimal vocab)

- × High fertility
 - Increased sequence length
 - Increased inference time
 - Limit on max sequence length
- Inferior token representation
 - Lesser pre-training required

Extending Vocabulary

- Low Fertility
- Reasonable sequence length
 - Decreased inference time
 - Longer sequences possible
 - Increased softmax
 - computation
- × More pre-training required

Some evidence seems to suggest that extending vocabulary needs a lot of pre-training to align languages (0.5B tokens vs 30B tokens) (LmaByndEng)

How to extend tokenizer vocabulary?

Initialization of New Embeddings

Sampling from Random (Normal) Distribution

Average of Existing Embeddings

Weighted Average of Existing Embeddings

Simple

Changes existing vocab's probability distribution Large convergence time

Limited change in existing vocab's distribution Large convergence time [AveInit]

Limited change in existing vocab's distribution Initializations like WESCHEL, OFA, FOCUS, ConstrainedW2V

WESCHEL uses similarities between vocab items across languages to decide weights; this improves convergence rates

Learn a hypernetwork that can predict embeddings for any tokenizer, enabling zero-shot tokenizer transfer

Average Initialization

Limitations of initialization from (Normal) Random distribution

- Incorrect generation in existing language
 - Large KL-divergence between pre- and post-expansion LMs for existing vocabulary
- No reason for fast convergence

A simple solution: Initialize new tokens to average of embeddings of existing tokens

- Low KL-divergence between pre- and post-expansion LMs for existing vocabulary
- Greedy decoding with prefix of existing tokens will result in output from existing tokens
- A general result: the above applies if new embeddings are in the convex hull of existing embeddings

A practical solution: We want to avoid all new embeddings been initialized to same value

• Add small random noise to the average embeddings

Initial drop in task performance on CPT, but performance recovers with increase in training data

Strong baseline

However, this method does to give any solution to improve convergence in continued pre-training

Weighted Average Initialization [WESCHEL]

- Target token embeddings as weighted average of source token embeddings
- Token weights based on source-target token similarities based on external static pre-trained word embeddings

/ECHSEL-RoBERTa

200k

150k

250k

Model	S	core@	0	Sc	core@2	5k	Score@250k		
WIUUEI	NLI	NER	Avg	NLI	NER	Avg	NLI	NER	Avg
WECHSEL-RoBERTa	78.25	86.93	82.59	81.63	90.26	85.95	82.43	<u>90.88</u>	86.65
TransInner-RoBERTa	60.86	69.57	65.21	65.49	83.82	74.66	81.75	90.34	86.04
FullRand-RoBERTa	55.71	70.79	63.25	69.02	84.24	76.63	75.28	89.30	82.29
XLM-R $_{\rm Base}$ (Final)	79.25	89.48	84.37	7					

Results for small LMs \rightarrow embeddings contribute a large % of parameters

 $\boldsymbol{e}_{x}^{t} = \frac{\sum_{y \in \mathcal{J}_{x}} \exp\left(s_{x,y}/\tau\right) \cdot \boldsymbol{e}_{y}^{s}}{\sum_{y' \in \mathcal{I}_{x}} \exp\left(s_{x,y'}/\tau\right)}$

Will we see such convergence improvements for Large LMs?

More Methods and Findings

Extensions of WESCHEL

OFA (One-for-All): multilingual vocabulary, need to handle large vocab (OFA)

- Reduce embedding dimension (inspired from ALBERT)
- Source embedding factorization with SVD for dimensionality reduction
 - Co-ordinates: language-dependent
 - Primitives: language-independent
- Projection of source co-ordinates to target co-ordinates like WESCHEL

FOCUS: Target token embeddings as weighted average of **overlapping** source token embeddings (FOCUS)

Constrained Word2Vec [ConstrainedW2V]

A simple approach to learn embeddings for new tokens in the convex hull of existing tokens

Formulate learning new token embeddings as a Word2Vec problem with the following constrains:

- Embeddings of existing tokens are not updated during word2vec training
- Embeddings of new tokens are strictly expressed as convex combination of existing tokens (so just averaging weights are learnt)

To ensure cross-lingual mapping of word embeddings, bilingual dictionaries are used in word2vec training

• Dictionary entries (w_s, w_t) are simply serialized as a sentence " $w_s w_t$ " for word2vec training

New token embeddings are learnt based on context as well as similarity to existing embeddings

	LLaMA2							
	Μ	IT	XN	ILI	Q	A	XLS	SUM
	En-X	X-En	en	avg	en	avg	en	avg
CW2V	17.0	27.3	60.4	38.1	77.7	35.8	0.6	0.4
OFA	11.2	16.2	60.4	37.1	76.0	26.0	0.6	0.3
Multivariate	11.1	16.1	60.4	37.2	77.5	28.7	0.5	0.2
Univariate	11.1	16.0	60.4	37.2	77.4	28.7	0.5	0.3
Mean	11.1	16.2	60.5	37.2	77.4	28.7	0.5	0.3
Random	0.0	0.0	33.3	33.3	0.0	0.0	0.0	0.0

CW2V is competitive or better than other sophisticated initialization approaches

Zero-shot Tokenizer Transfer (ZSTT)

Can we learn a function that can predict the embedding for any given tokenizer for a fixed language model?

Learn this function once, and then use it to predict embeddings for any new tokenizer

Tokenizer data for training is synthetically generated by considering all possible frequent tokenizations of a string

End-to-end training: learn embeddings which actually improve language modeling

ZSTT performs better than other approaches on the XNLI task and other tasks as well The Hypernetwork generates the target embeddings for the new tokenizer

Gold Target embeddings are not explicitly defined, but are ones which minimize the language modeling loss of the LM under considering

	ar	bg	de	el	en	es	fr	hi	ru	SW	tr	ur	vi	Avg.
original	68.9	75.6	74.7	73.7	82.3	76.9	76.8	68.4	72.9	63.5	72.2	64.7	73.1	72.6
Lexical	58.7	63.1	65.3	61.7	72.8	68.4	66.7	61.8	62.3	51.8	58.5	60.0	72.0	63.3
FVT	63.9	70.3	70.9	67.4	79.0	73.9	71.9	65.7	67.8	57.1	66.3	61.7	72.9	68.4
OFA	57.3	64.2	67.3	62.8	73.6	68.6	68.4	61.8	63.1	54.8	59.7	59.3	72.3	64.1
FOCUS	64.8	71.0	71.6	67.7	79.6	74.4	72.6	64.5	68.1	55.7	67.3	61.9	72.6	68.6
ours	67.9	73.9	74.1	71.4	81.1	76.2	74.7	67.7	70.7	62.3	68.7	63.2	73.9	71.2
Δ accuracy Δ length	-1%	-2%	-1%	-2%	-1%	-1%	-2%	-1%	-2%	-1%	-3%	-2%	+1%	-1%
	-22%	-14%	-13%	-23%	-9%	-11%	-12%	-13%	-13%	-19%	-15%	-9%	-3%	-14%

Summary & Recommendations

- Vocab expansion reduces fertility and improves efficiency
- Is vocabulary expansion better than relying to initial sub-optimal vocab?
 - Initial drop in results for vocab expansion before recovery
 - Vocab expansion might require lot of pre-training for alignment
- Can we do better than random initialization?
 - Embeddings which initialize new tokens based on similarity with older embeddings do better
 - Simple methods like averaging, constrained W2V are sufficient
 - Faster convergence
 - Slightly better downstream performance
 - Results mostly for smaller LMs and decoder LMs
- Will vocabulary extension lead to lower performance on English?
 - If initialized embeddings are in convex hull, greedy decoding results does not change

Continual Pre-training

Train on document-level data

Finetuning on long, coherent sequences helps model learn and correlate different pieces of knowledge

To avoid forgetting English competence and knowledge

- Include English in the pre-training data
- Finetune-only small number of adapter parameters (*ChineseLLama, OpenHathi*)

Large-scale, Document-level Datasets

High Quality Documents

What properties do we want to see in multilingual corpora? Wide coverage of topics

Representation of culture-specific data, native literature

Capture data in different modalities and genres

Data to Help Cross-lingual transfer with English

Build custom language (group) specific collections to address gaps

Why do continual pre-training?

Language competence/fluency in target language

	L(0)	L(10k)	L(100k)	L(1M)
Chinese	10.151	8.697	6.634	5.249

Perplexity reduces with increase in pre-training corpus size (LmaByndEng)

Improve alignment b/w English and target language

Language	Base LLM	After CPT
Gujarati	0.39	0.46
Hindi	0.40	0.44
Marathi	0.44	0.48

Cosine similarities between English and target languages increases with CPT

(RomanSetu)

Provide required knowledge in target language for better understanding

- LMs better at using in-language knowledge vs. cross-lingual transfer (Xfactr, MLAMA)
- Incorporate cultural-specific knowledge capture in native language corpora only

Most multilingual models can't transfer knowledge in English to other languages

Knowledge Probing Task -> Predict missing tokens which capture model's knowledge

		es sentence	Bloomberg L.P. fue funda	da en (ma	$ ask\rangle \times 1 \sim 5.$
			prediction	#tokens	confidence
2			2012	1	-1.90
fact	$\langle Bloomberg L.P., founded_in, New York \rangle$		Nueva York	2	-0.61
en prompt	[X] was founded in [Y].	es outputs	EE. UU	3	-1.82
			Chicago, Estados Unidos	4	-3.58
			2012 Bloomberg L.P	5	-3.06

Results on Knowledge Probing task shows that non-English languages don't have enough data

(Xfactr) 32

Improving Cross-lingual Transfer in Pre-training

- Using Parallel/Translated Data
- Using Romanized Representation

Why?

- Help improve cross-lingual alignment
- Make knowledge available in English in the target languages
- Help translation task

Using Parallel/Translated Data

Using parallel data (Tower, Palm2, PolyLM, OpenHathi, MTDataPretrain)

- Train on document/paragraph pairs → very little availability
- Train on sentence pairs → modest availability depending on language pair
- MT Data modestly useful for NLU (results on encoder LMs) (*PrimerPMLM*)
 - More investigation needed

Using Machine Translated data (IndicMonoDoc)

Use off-the-shelf MT data to generate target language data at scale -> needs a decent MT model

- Model training includes translated documents
- Some evidence to show that translated documents can achieve performance close to pre-training with native language documents

Need better to understand impact of translation quality

Using Parallel/Translated Data (1)

Using human-written parallel data (Tower, Palm2, PolyLM, OpenHathi, MTDataPretrain)

- Train on document/paragraph pairs -> very little availability
- Train on sentence pairs → modest availability depending on language pair

Useful for translation task (Tower, OpenHathi, InciBiling)

No systematic results on utility of parallel data in pre-training

Previous work

- Encoder-only models & NLU tasks → parallel data has limited utility (*PrimerPMLM*)
- Encoder-decoder models & NLG tasks → don't know

Using Parallel/Translated Data (2)

Using Machine Translated data (Indic Mono Doc)

Use off-the-shelf MT data to generate target language data at scale

- ➔ needs a decent MT model
- Model training includes machine translated documents
- Pre-training on translated documents slightly inferior to original documents
 - Translation quality filtering + using small original data makes result comparable
- For small LMs, synthetic data might outperform original data

(a) Results on finite											
	NLU				NLG						
Model	iXNLI	bbc-a	iitp-mr	iitp-pr	midas	Avg.	Headline Gen.	Sentence Summ.	Question Gen.	Wikibio	Avg.
HI-clean	73.61	81.75	72.58	79.73	80.34	77.60	27.54	23.64	24.84	52.16	32.04
syn-HI_en-unfiltered	72.87	77.92	64.36	76.22	79.91	74.26	27.29	22.93	24.22	50.14	31.14
syn-HI_en-unfiltered+10%	74.63	78.36	67.75	77.46	80.17	75.67	-	-	-	-	-
syn-HI_en-filtered	74.75	81.06	69.03	78.58	79.73	76.63	27.15	23.10	24.41	49.88	31.13
syn-HI_en-filtered+10%	74.49	80.94	71.61	79.92	80.64	77.52	-	-	-	-	-

(a) Docults on Uindi

Romanized Representation (RomanSetu)

High-fertility/data loss for under-represented vocab

- Poor representation quality
- Vocab extension requires lot of pre-training (Lai et al . 2023)

<s> चारों अंतरकि्ष यात्री बेंगलुरु में भारतीय अंतरकि्ष अनुसंधान संग<0xE0><0xA4><0xA0>न (<0xE0><0xA4>< <0x87>सरो) की अंतरकि्ष यात्री सुविधा में प्रशक्तिषण ले रहे हैं।<0x0A> (130 tokens)

<s> ch<mark>aaron antariksh ya</mark>atree b<mark>engaluru mein bha</mark>arateey antariksh anusandhaan sangathan (isaro) kee antariksh ya atree su<mark>vidha mein prashikshan le rahe hain.<0x0A> (63 tokens)</mark>

Pre-train on romanized corpora

- Natural transliteration
- Fixed Romanization schemes

Challenges with non-Latin

script languages

Language	Ν	R
Gujarati	18.44	3.39
Hindi	7.36	2.98
Malayalam	12.85	5.04
Marathi	8.91	3.64
Tamil	12.11	4.89

Romanized fertility more than 2x lower than native script fertility

Language	E - N	E - R
Gujarati	0.39	0.47
Hindi	0.40	0.50
Malayalam	0.40	0.46
Marathi	0.44	0.48
Tamil	0.44	0.43

Romanized representations are better aligned to English than native script representations 37

Summary and Recommendations

- Amount of data used for CPT
 - Modest amount of data (hundreds of millions of tokens) for language competency and modest cross-lingual transfer
 - Lot of translated data required for knowledge transfer? Avenue for research
- Does parallel data improve cross-lingual transfer?
 - Improves translation quality
 - Improving cross-lingual transfer, use of translated data requires further research
- Data augmentation methods like romanization, code-switching are helpful
- Drop in English task performance
 - Mitigation: Significant ratio of English, use adapters for CPT
 - Is retaining English performance critical to cross-lingual transfer?

Instruction Tuning

Train on in-language IFT dataset

Sources of IFT dataset Quality and diversity of IFT dataset

$$\ell_{\rm CE}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{|\mathcal{V}|} y_j \log(\hat{y}_j) \qquad \mathcal{L}_{\rm SFT} = \frac{1}{N} \sum_{i=1}^N \ell_{\rm CE}(\mathbf{y}_i, \mathcal{M}_{\theta}(\mathbf{x}_i))$$

To retain English task performance

• Include English in the IFT training

Instruction Tuning Tasks

Generating IFT Data

Auxiliary Tasks

Transforming IFT

Datasets

Variety of tasks/objectives to improve non-English performance

- English Data IFT
- In-language IFT with Machine Translated Data
- Locally/Culturally relevant IFT data
- Parallel Data
- Monolingual Data
- Romanized IFT Data
- Cross-lingual Thought Data
- Cross-lingual IFT Data
- Code-switched IFT Data

Let's look at these tasks in detail

41

Using English IFT Dataset

- Instruction tune the model on English instruction dataset
- Evaluate on non-English data → Zero-shot cross-lingual evaluation
- Instruction tuning on English important to retain English capabilities

Using Machine Translated IFT Dataset

- Translate English instruction tuning datasets into the language
- Fine-tune model on translated dataset

Task	BeleBele QA	MKQA	XL-Sum
	Accuracy	F1	Rouge-L
English IFT	45.58	36.48	8.42
Language IFT	48.28	37.95	15.87

Average performance across many languages; src: SDRRL

Instruction tuning on translated data outperforms English instruction-tuning

Creating Translated IFT Data

- Off-the-shelf NMT systems (Airavat): higher quality, particularly for low-resource
- <u>GPT (Okapi</u>): can do translation taking the entire context of input/output
- <u>Hybrid Approach</u> (LImByndEng): Do one of the above depending on language's translation quality

		avg.	avg.
	#langs.	chrF	BLEU
ChatGPT (0-shot)	203	32.3	16.7
ChatGPT (5-shot)	203	33.1	17.3
GPT-4	20	44.6	24.6
NLLB	201	45.3	27.1
Google	115	52.2	34.6

Comparison of various translation engines Sentence-level (ChatGptMT)

Model])			
	News	Social	Fiction	Q&A	Ave.
Google	1.9/2.0	1.2/1.3	2.1/2.4	1.5/1.5	1.7/1.8
DeepL	2.2/2.2	1.3/1.1	2.4/2.6	1.6/1.5	1.9/1.9
Tencent	2.3/2.2	1.5/1.5	2.6/2.8	1.8/1.7	2.1/2.1
GPT-3.5	2.8/2.8	2.5/2.7	2.8/2.9	2.9/2.9	2.8/2.8
GPT-4	3.3/3.4	2.9/2.9	2.6/2.8	3.1/3.2	3.0/3.1

Comparison of various translation engines Document-level (ChatGptMT)

Creating Translated IFT Data (2)

- Instruction, Input, Output (Okapi, Airavat, xLLama, SDRRL)
- Input, Output (BLOOMZ)
 - English instruction is a common usecase
 - Models are good at English Instruction following

Quality Filtering

High quality examples are important for instruction tuning

- Use an MT evaluation metric like COMET-QE to identify bad translations
- Rule-based filters to avoid code examples, etc. that are difficult to translate

Creating Translated IFT Data (3)

- Instruction, Input (BactrianX)
 - Give translated Instruction & Input
 - Generate response using GPT in the target language
 - Language/culture-specific examples
- Seed Instructions (PolyLM, SeaLLM)
 - Generates the entire examples from strong LLM like GPT in target language
 - Language/culture specific examples, but quality/diversity might be issue

What to Translate

But we are just translating existing datasets – they might not be reflective of topics relevant to the language users

<u>Generating Culturally Relevant IFT Data</u>

Use multiple English LLMs along with Wikipedia context to simulate conversations on topics of interest

(a) English

సమూహాలలో అమర్పేబడిన్ 27 పాలరాతి రేకులతో రూపొందించబడింది. ఈ ఆలయం అసాధారణమైన తందం మరియ నిర్మాత రాహకల్పన కోసం వివిధ జేదికలలో విస్తృత దృష్టిని పొందింది. ఇది గరిష్టంగా 2.500 మంది వ్యక్తులకు వసతి కల్పిస్తుంది మరియు ప్రోషన చేయడానికి, ధానం చేయడానికి లేదా ధానదించడానికి వచ్చి అన్ని మతాల ద్రజలకు ద్రావించడానికి వచ్చ అన్ని మతాల (బజాలకా) అందుబాటులో ఉంటుంది. అలయం యొక్క (పశ్రేశమైన దీజైన్ మరియు నిర్మీలపైన వాకాచరణం దీనిని పర్యాటకులకు మరియు స్థానికులకు ఒక పైపద్ద గమ్మస్థానంగా మార్పింది. దాని చుట్తూ తమ్మిది నీటి కొంనుటు మీరియు సుందరమైన ఉమరికను జీదించడం. లీటన్ బంపుల్ (పపించంలో అమరికులు పండిగుండే చునాలులో ఒకటి, (పతి అత్యధికంగా సందర్శించే భవనాలలో ఒకటి, (ప్రతి సంవత్సరం మిలియన్ల మంది సందర్శకులను ఆకర్షిస్తుంది. మీరు జామా మసీదు మరియు లోటస్ టెంఫ్రల్ యొక్క వారితక ప్రాముఖ్యత మరియు నిర్మాణ శెలులను పోల్సి చూడగలరా? ఖచ్చితంగా, నేను దానితో సహాయం చేయడానికి సంతోషిస్తాను.

Ö

లోటస్ టెంపుల్ గురించి మరింత చెప్పగలరా? ఇది దేనికి ప్రసిధి చెందింది మరియు దాని ప్రత్యేకత

లోటస్ టెంపుల్ అనేది భారతదేశంలోని దక్షిణ ఢిల్లీలో

Wiki-Chat

ఎగ్ర ఇసుకరాయి మరియు తెల్లని పాలరాయిని కలిగి ఉంటుంది, (పతి వైపు రెండు మినార్డు మరియు మూడు ಗೆಲು ಹಂಟ್ರಾಯ

దక్షిణ ఢిల్లీలో ఉన్న లోటస్ టెంపుల్, బహాయి ఆరాద్దన గృహం, 196లో పూర్తీయింది, జిది తెల్లని పాలరాతిత తయారు చేయబడిన విలక్షణమైన తామర ఆకారపు నిర్మాణానికి ప్రసిధ్ధి చెందింది, ఆలయంలో తొమ్మిది వైపులా ఉండే 27 పాలరాతి రేకులు గుత్తులుగా అమర్పబడి ఉన్నాయి. నిర్మాణ శైలి ఆధునికమైనది మరియు విశిష్టమైనది, అన్ని మతాల ఐక్యత యొక్క బహాయి విశ్వాసం యొక్క సూత్రాన్ని సూచిస్తుంది.

సారాంశంలో, ఈ రెండు నిర్మాణాలు ఢిల్లీలో ముఖ్యమైన చారిత్రక మైలురాళ్లు అయితే, అవి విభిన్న మత విశ్వాసాలు మరియు నిర్మాణ శ్రీలులను సూచిస్తాయి. జామా మసీదు మొఘల్ వాస్తుశిల్పానికి ఒక అద్భుతమైన ఉదాహరణ, ల్రోటిస్ టెంపుల్ బహాయి విశ్వాసం యొక్క మతాల ఐక్యతకు ఆధునిక (పాతినిధ్యం.

(b) Telugu

Translate the conversations into English

(IndicLLMSuite)

Creativity is

the limit

 \bigcirc

Using Parallel Data

Translation is a *special* task for multilingual IFT models

- Teaches the model to translate
- Aligns English and language representations better
- Improves performance on other downstream tasks
- Parallel data and translated IFT data both help

Instruction Data	XQUAD (exact match)	MLQA (exact match)	mLAMA (exact match)	XLSum (Rouge-1)			
Alpaca-En	31.8	26.7	5.3	9.0			
Alpaca-En+En-Zh	34.3	38.0	5.8	27.1			
Alpaca-En+Alpaca-Zh	51.7	48.0	21.9	25.5			
Alpaca-En+Alpaca-Zh+En-Zh	54.9	51.8	30.4	28.3			
Results on Chinese for various Tasks							

Instruction-tuning Data	Ar	Hi	Vi	Zh
Alpaca-En	16.1	13.7	34.1	26.7
Alpaca-En+En-Zh	33.6	35.1	42.2	38.0
Alpaca-En+Alpaca-Zh	33.1	35.1	50.1	48.0
Alpaca-En+Alpaca-Zh+En-Zh	37.0	42.3	50.8	51.8

Results for other languages on MLQA

(xLlama,PLUG,TOWER,ALMA-R)

Using Monolingual Data

- "Translationese IFT Data" → output language might not be fluent and highquality
- Expose model to monolingual target language data during IFT
- Incorporate a task that helps model generate fluent output in target language

Task 1: Standard next-word prediction (CLM)Switch between IFT and CLM objective in mini-batches

Task 2: Sentence Completion Task Only IFT objective required Question: Complete the following sentence in *Indonesian* according to its context. *Sang rubah cokelat cepat* Answer: *Sang rubah cokelat cepat melompati anjing malas*.

Romanized Representation

Just like pre-training, use romanized representation for IFT too

- Continual Pre-training with romanized data is crucial
- NLG task performance improves with romanized data
- NLU task performance is on par, though more efficient

Cross-Lingual Thought Prompting (XLT)

Ask the model to implicitly think in a different language

詹姆斯·韦伯望远镜是什么? (What is James Webb Telescope?) Respond in Chinese. Model asked to generate intermediate English artifacts

No explicit translation call

The LLM itself is used as a translator implicitly

Input in original language is available to LLM

Increased token length for model, Reduces possible input token size

(XLT,PLUG) 51

Monolingual QA

TaCo: Instruction tuning with Cross-Lingual Thought data

Limitations

- Reduced maximum sequence length
- Increased latency

	Standard IFT	TaCo
Nepali	39.3	88.1
Persian	46.5	83.9

Evaluation on translated Vicuna Benchmark with GPT4

The PLUG paper also shows improvements (discussed later)

(TaCo,PLUG)

Cross-Lingual Instruction Tuning

 Q_{hi} : मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे 5 संक्षिप्त बिंदु दीजिये।

 A_{en} :

- 1. Prioritize tasks based on importance and urgency.
- 2. Set specific goals with deadlines (SMART goals).
- 3. Use time management tools like calendars and apps.
- 4. Minimize distractions to maintain focus.
- 5. Regularly review and adjust your schedule for better efficiency.

Cross-lingual instruction help the model to align languages and think in English

Avoids intermediate English generation of Cross-lingual Thought Prompting

(SDDRL,XCOT,CIT)

Code-switched Instruction Tuning

Code-switching: alternating between two or more languages in conversation

Generate code-switched instruction by replacing some source words with their target language translations

Code-switching help the model to align languages better at sub-sentence level

Some optimizations to improve models further

- Retain English instructions, code-switch only the inputs and outputs
- Do code-switching during pre-training as well

Self-Distillation from Resource Rich Language

Using the model's own responses can help uses the model's own representation space better

(SDDRL,LMPpl) 55

Putting it all together

(SDDRL)

(these tasks are added so model preserves native language *competency*)

Summary Results (SDDRL)

	BELE.	XL-SUM	FLORES	MKQA	AVG.			
Performance on Target Language								
SFT	42.24	16.48	18.45	38.86	29.01			
T-SFT	42.77	15.32	16.59	43.40	29.52			
CIT	42.53	15.75	20.49	43.70	30.62			
XCOT	41.19	15.79	17.21	42.04	29.06			
SDRRL	43.67	17.89	25.86	44.63	33.01			
	Perfo	rmance on E	nglish Langu	age				
SFT	60.19	15.25	28.49	39.62	35.89			
T-SFT	58.70	15.63	23.72	37.43	33.87			
CIT	58.66	15.42	18.31	36.67	32.27			
XCOT	57.73	14.90	23.96	37.94	33.63			
SDRRL	60.67	16.24	29.47	40.32	36.68			

SFT: FT on English data T-SFT: source and target translated CIT: target translated XCOT: source translated + source code-switching

(This summary is for the SeaLLM backbone LLM, results in main paper are for LLama)

Bringing together all these objectives and data augmentations:

- Helps improve overall response quality across multiple tasks
- Retains English performance

Ablation Studies (1)

		NLU	AVG.	NLG AVG.		
		TAR.	ENG	TAR.	ENG	
1	Full Method	50.58	66.29	28.24	31.69	
2	- $\mathcal{D}_{\mathrm{TL}}$ and $\mathcal{D}_{\mathrm{LT}}$	49.56	65.93	26.15	30.55	
3	- $\mathcal{D}_{\mathrm{synth}}$ + \mathcal{D}	48.59	65.10	25.16	30.10	
4	- $\mathcal{D}_{\mathrm{mt}}$ and $\mathcal{D}_{\mathrm{comp}}$	50.41	66.01	26.61	30.19	
5	- Code Switching	50.37	65.94	27.13	30.69	
6	Only $\mathcal{D}_{\mathrm{mt}}$ and $\mathcal{D}_{\mathrm{comp}}$	41.25	61.61	17.89	22.28	

Table 6: Ablation study. Average scores of target language (TAR.) and English (ENG) on natural language understanding task (NLU, including BELEBELE) and natural language generation tasks (NLG, including FLO-RES, XL-SUM ROUGE-L, and MKQA) are reported.

- Using the LLMs own responses is a very useful method to improve cross-lingual transfer
- The MT and sentence completion tasks are very useful
- The cross-lingual instruction tuning tasks are also complementary
- Code-switching (on input side) has modest benefits •

Ablation Studies (2) (PLUG)

Training Method Comparison	Chinese			Korean			Italian			Spanish		
	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$
English-Centric Foundation LLM: LLaMA-2-13B												
PLUG vs. Pivot-Only	70.9	19.1	+51.8	76.5	12.7	+63.9	67.6	17.8	+49.8	64.0	20.9	+43.1
PLUG vs. Mono. Response	58.0	25.2	+32.8	64.1	19.9	+44.2	50.3	25.8	+24.5	53.0	27.6	+25.5
PLUG vs. Mono.+ Translation	53.0	28.0	+25.1	62.7	20.1	+42.6	50.1	26.6	+23.5	51.3	25.6	+25.7
PLUG vs. Mono.+Code-Switch	50.2	31.6	+18.6	55.2	25.6	+29.6	46.2	30.9	+15.3	48.4	29.9	+18.5

PLUG: Thinking in pivot language Pivot-only: IFT On pivot language Mono-Response: IFT on pivot and target language Mono + Translation: add translation task to Mono-Response

Mono + Code-Switch: add cross-lingual instruction tuning to Mono-Response

Evaluation with GPT4

- Including Translation task is useful
- Training on cross-lingual thought data is most effective
- Cross-lingual instruction tuning is the best next, closes gap on cross-lingual thought data

Summary and Recommendations

- Machine Translation is the dominant method to create IFT data
 - Use English LLMs to generate culture/region-specific data before translation
- Improve alignment between English and other languages using methods like cross-lingual instruction tuning, romanized/codeswitched data
- Machine Translation is an important task in the multilingual IFT mix

Summary

- Rapid Advances in Multilingual LLMs
- Extending strong English LLMs to other languages is an effective and efficient direction
- Vocabulary expansion to support new languages and make LLMs efficient, but challenges in achieving convergence
- Continual pre-training important to improve language competence
- Lot of work on aligning languages in the instruction tuning stage

Future Directions

Modeling/Training

- Improving cross-lingual transfer
- Use of synthetic data
- Better "thinking" in English
- Composing Task and Language skills efficiently
- Small Multilingual models
- Multilingual Preference Optimization

Data/Resources

- Scalable evaluation methods for multilingual LLMs
- Creation of multilingual benchmarks
- Collection of large-scale culture-specific text corpora

Thanks

If you find this work useful, please cite it in your work

@online{kunchukuttan2024extendllm,

author = {{Anoop Kunchukuttan}},

title = {Extending English Large Language Models to New Languages: A Survey},

url = {https://anoopkunchukuttan.gitlab.io/publications/presentations/extend_en_llms_apr2024.pdf},

date = $\{6^{th} August 2024\},$

urldate = {6th August 2024}

}

Github Page: https://github.com/anoopkunchukuttan/multilingual_extend_llm

Acknowledgments

Based on work, explorations and discussions with many colleagues ...

Raj Dabre, Ratish Puduppully, Jay Gala, Thanmay Jayakumar, Jaavid Aktar Husain, Aswanth Kumar, Mohammed Safi Ur Rahman Khan, Mitesh Khapra, Priyam Mehta, Diptesh Kanojia, Rudra Murthy, Nandini Mundra, Aditya Nanda Kishore, Sumanth Doddapaneni, Rupesh Mehta, Manish Gupta, Diksha Golait

Contact: anoop.kunchukuttan@gmail.com

Home Page: https://anoopkunchukuttan.gitlab.io

Multilingual Pre-training Corpora

- MADLAD-400
- CulturaX
- ROOTS
- mC4
- OSCAR
- CC100
- Glot500-c
- Sangraha
- SEA-LION-PILE

Notable Projects on Extending English LLMs

- BLOOM+1
- ChineseLLama
- Bactrian-X
- Okapi
- SeaLLM
- TOWER
- ALMA and ALMA-R
- AceGPT