Extending English Large Language Models to New Languages

A Survey

Anoop Kunchukuttan

Microsoft Translator

Al4Bharat

IIT Madras

Outline

- Introduction to LLMs
- The Multilingual LLM Challenge
- Extending English LLMs
 - Vocabulary Expansion
 - Continued Pre-training
 - Instruction Tuning
- The Indic LLM Scenario
- Summary

If you find this survey useful, please cite it in your work

What are Large Language Models?

- Typically, transformer decoder models
- They generate text by looking at only previously generated text (auto-regressive)
- Trained on a self-supervised task
 - Next word prediction task
 - Large amount of text data

It is just a rehash of old movies

The movie is <MASK>

Large Models

Prompt

In-context learning capability

Instruction

Tell me the sentiment of this review

Example

The movie begins The plot is engaging, thoroughly enjoyable.
The movie is great

Oh, how can such a fine cast produce such a terrible performance..... A total waste of time.
The movie is pathetic

Output probabilities Softmax Feed Forward Linear LayerNorm LayerNorm Transfromer Block Linear X NTransfromer Block Multi-head Attention Positional encoding Linear Input Embedding LayerNorm Input Tokens

(GPT3)

Finetuning on (relatively) small supervised and preference data to align instructions and values

(InstructGPT)

Current LLMs vs. older generation (BERT/BART/XLM-R)

Current

- Every task is just text completion
- Decoder-only (NLU and NLG)
- In-context learning & Instruction Tuning
- Causal LM training objectives
- Large model size (GPT3: 175B params)
- Trained on large corpora (2T tokens LLama2)

Old Generation

- Classification/text generation
- Encoder-only (NLU), Enc-dec (NLG)
- Per-task finetuning
- Denoising objectives (MLM, DAE)
- Small models (largest mT5: ~13B)
- Modest amount of data (~BERT: 137B tokens)

What makes LLMs exciting?

- Inherent knowledge
- Multi-task abilities and taskcomposition
- Little task-specific training required
- Help in writing, creativity, brainstorming, data generation, explanation, etc.

- Q&A
 Answer questions based on existing knowle.
- Summarize for a 2nd grader

 Translates difficult text into simpler concep.
- Text to command

 Translate text into programmatic commands.
- Natural language to Stripe API
 Create code to call the Stripe API using nat...
- Parse unstructured data
 Create tables from long form text
- # Python to natural language
 Explain a piece of Python code in human un..
- Calculate Time Complexity
 Find the time complexity of a function.
- # Advanced tweet classifier

 Advanced sentiment detection for a piece o...

- Grammar correction

 Corrects sentences into standard English.
- Natural language to OpenAI API

 Create code to call to the OpenAI API usin...
 - English to other languages

 Translates English text into French, Spanish...
- SQL translate

 Translate natural language to SQL queries.
- Classification
 Classify items into categories via example
- Movie to Emoji
 Convert movie titles into emoji.
 - Translate programming languages

 Translate from one programming language ...
- # Explain code
 Explain a complicated piece of code.

Prompt: Draw a unicorn in TiKZ. **Prompt:** Can you write a proof that there are infinitely many primes, with every line that rhymes? GPT-4: GPT-4: [Produces LATEX compiling to following picture. Yes, I think I can, **Drawing** Though it might take a clever plan. I'll start by noting Euclid's proof. Which shows that primes aren't just aloof. Assume we have a finite list, Of primes, and that none have been missed. Multiply them all together, And add one, just to be clever. The result will be a number, That has no prime factors, oh wonder! But every number has a prime,

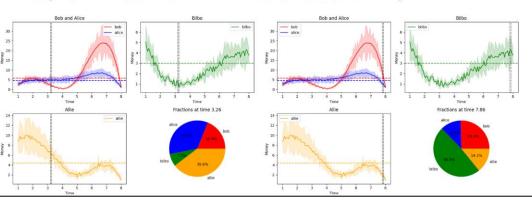
Maths

Explanations

Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8], y1 = [2, 3, 5, 18, 1], y2 = [3, 5, 6, 8, 1], y3 =[5,1,2,3,4], y4=[9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in below. I want the legend of v1 to be "bob", v2 to be "alice", v3 to be "bilbo", v4 to be "allie". I want the x-axis to be labeled with "time" and y axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]



Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8], y1 = [2, 3, 5, 18, 1], y2 = [3, 5, 6, 8, 1], y3 = [3, 5, 6, 8, 1], y3 = [3, 5, 6, 8], y1 = [3, 5, 6, 8], y2 = [3, 5, 6, 8], y3 = [3, 5, 6, 8], y4 = [3, 5, 6, 8], y5 = [3, 5, 6, 6], y5 = [3, 5, 6, 6], y5 = [3, 5, 6,[5,1,2,3,4], y4=[9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in below. I want the legend of y1 to be "bob", y2 to be "alice", y3 to be "bilbo", y4 to be "allie". I want the x-axis to be labeled with "time" and y axis to be labeled with "money". I want to add a 10 %-40% random error bar to each curve, through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4:

That divides it, it's just a matter of time.

So we've found a contradiction,

And our finite list needs eviction. There must be infinitely many primes, And that's the end of my rhyming lines.s

> This is a conversation between a user and an artificial intelligence agent that follows instructions or answers questions. The AI always follows the instructions correctly.

User: Can you compose a short tune (say four to eight bars) using ABC notation? AI: There are many possible ways to compose a short tune in abc notation, but here is

one example: X:1

T:Example Tune

M:4/4

L:1/8

|:G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-

G2z2 :|

|:c2de f2ed | c2de f2f2 | g2fe d2cB | c4c2z2 : l

This tune has two four-bar phrases, each repeated once, forming an A part and a B part. The key is C major.

GPT-4:

User: After the first bar G2AB c2BA, you chose G to start the next bar. Give an example of a change to the notes in the first bar that would have caused you to pick D instead of G as the first note in the second bar.

AI: One possible change to the notes in the first bar that would have caused me to pick D instead of G as the first note in the sec ond bar is:

|:G2AB c2Bc | ...

This change creates a stronger cadence on the C note at the end of the first bar, which is the fifth degree of the scale. This suggests a modulation to the dominant key of G major, which has D as its fifth degree. Therefore, starting the second bar with D would create a smooth transition to the new key and imply a harmonic progression of V-I.

Prompt:

```
struct mystruct_A { char a; int b; char c; } x;
struct mystruct_B { int b; char a; char c; } y;
#include <stdio.h>
int main(void) {
    printf("Size of x: %zu bytes\n", sizeof(x));
    printf("Size of y: %zu bytes\n", sizeof(y));
   return 0;
Possible Output:
```

GPT-4:

There are different ways to implement and align structures in memory. so the exact output may vary depending on the compiler, platform, and options used. However, one possible output is:

Size of x: 12 bytes Size of y: 8 bytes

This output assumes that the compiler uses 4-byte alignment for structures, meaning that each structure member starts at an offset that is a multiple of 4 bytes from the beginning of the structure. This may result in some padding bytes being inserted between or after the members to maintain alignment. For example, in x, there may be 3 padding bytes after a and 3 padding bytes after c, while in y, there may be no padding at all. The size of a structure is the sum of the sizes of its members plus any padding bytes.

Understanding

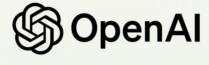
Programs

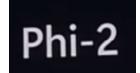
Plotting

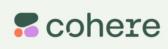
(SparksOfAGI)

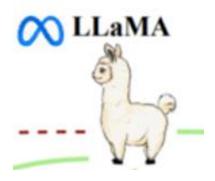
Explosion of LLMs ... but mostly limited to English

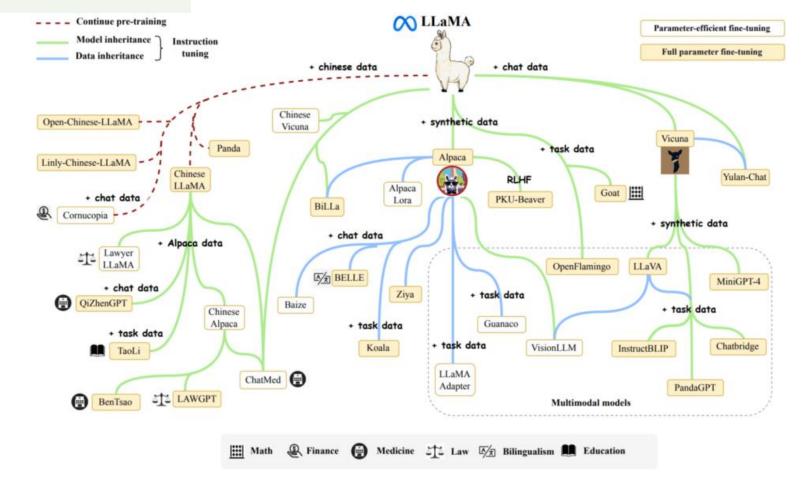
ANTHROP\C











Benefits of LLMs are mostly limited to English

Language	Cat.	Cha	tGPT
Language	Cat.	(en)	(spc)
English	Н	70.2	70.2
Russian	Н	60.8	45.4
German	H	64.5	51.1
Chinese	Н	58.2	35.5
French	H	64.8	42.2
Spanish	Н	65.8	47.4
Vietnamese	H	55.4	44.8
Turkish	M	57.1	37.1
Arabic	\mathbf{M}	55.3	22.3
Greek	\mathbf{M}	55.9	54.5
Thai	\mathbf{M}	44.7	11.5
Bulgarian	M	59.7	44.6
Hindi	M	48.8	5.6
Urdu	L	43.7	6.3
Swahili	X	50.3	40.8

Resi	ılte	on	X٨	II I
NESI	นแจ	UII	ΔII	

Languaga	Cat.	ChatC	GPT(en)
Language	Cat.	EM	F1
English	Н	56.0	74.9
Russian	Н	30.2	49.1
German	Н	45.9	65.8
Chinese	Н	37.1	42.3
Spanish	Н	41.8	65.8
Vietnamese	Н	36.1	57.3
Turkish	M	34.5	56.4
Arabic	M	32.0	50.3
Greek	M	29.7	45.0
Thai	M	31.2	43.4
Hindi	M	17.5	37.8
Average		35.6	53.5

	#langs.	avg. chrF	avg. BLEU
ChatGPT (0-shot)	203	32.3	16.7
ChatGPT (5-shot)	203	33.1	17.3
GPT-4	20	44.6	24.6
NLLB	201	45.3	27.1
Google	115	52.2	34.6

Performance on translation averaged across languages

	Chat	GPT	NLI	LB
Lang.	BLEU	chrF	BLEU	chrF
srp_Cyrl	1.36	3.26	43.4	59.7
kon_Latn	0.94	8.50	18.9	45.3
tso_Latn	2.92	15.0	26.7	50.0
kac_Latn	0.04	2.95	14.3	37.5
nso_Latn	3.69	16.7	26.5	50.8
jpn_Jpan	28.4	32.9	20.1	27.9
nno_Latn	37.1	58.7	33.4	53.6
zho_Hans	36.3	31.0	26.6	22.8
zho_Hant	26.0	24.4	12.4	14.0
acm_Arab	28.2	44.7	11.8	31.9

Performance on translation High vs low resource

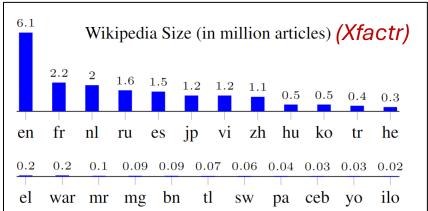
Results on QnA

- Significant gap between English and other languages on multiple tasks
- High-resource and Latin script languages can give good performance on GPT
- Poor performance on low-resource languages
- Translate-test is a strong baseline
- Open-source models lag behind GPT models

 they are very English heavy

Why do LLMs lag behind for other languages?

- Lack of
 - Pre-training data
 - Token representation
 - Instruction tuning data
 - Human preference data
- Inability to transfer from English
- Limitations of Translate-Test





(BUFFET, MEGA, ChatGptMT)

Do English LLMs have some inherent multilingual capabilities?

Yes, to some extent ...

Why? – during training they might have been exposed to some non-English data

- Documents with multiple languages
- Incorrect LID

How good are the multilingual capabilities?

- Might be ok at language understanding e.g. classification, sentiment analysis
- Bad at generation
- Better on Latin script languages
- Languages with better pre-training representation perform better

How do English LLM achieve multilingual processing capabilities?

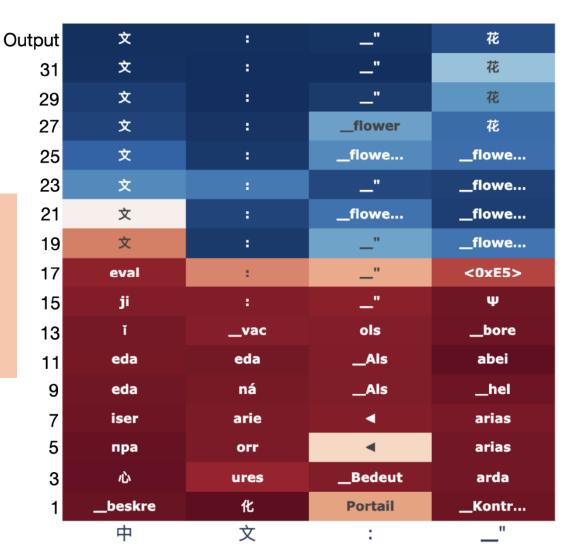
- Do LLMs think in English?
- Do LLM use English as a pivot for decision making?

Bottom layers: Feature learning

Middle layers: Concept mapping to language tokens (with English bias)

Top layers: Language generation in target language

The central question in building multilingual LLM is to bring representations of English and other languages closer to achieve good cross-lingual transfer



Open-source Multilingual LLM Efforts

Trained from scratch: BLOOM, mGPT, PolyLM, EAGLE, mT0, XGLM

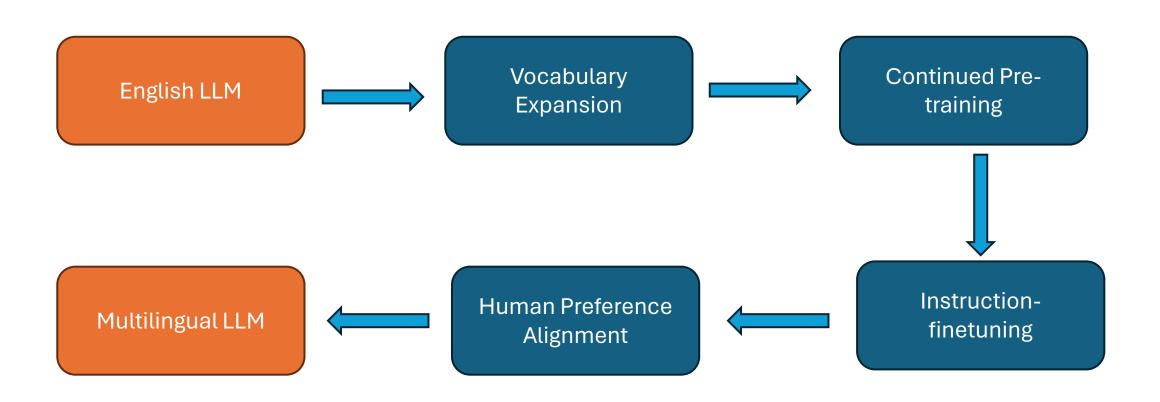
- English representation is lesser compared to models like Llama, Gemma,
 Mistral → limited English capabilities
- Cannot expect good non-English capabilities either
- Large-scale compute needed for training

Focus of this survey

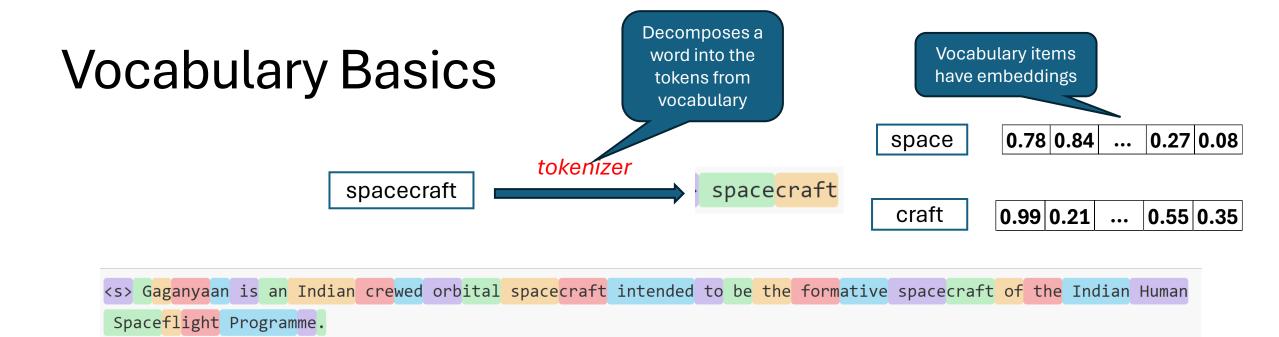
Extending English LLMs: ChineseLLama, OpenHathi, SeaLLM, ALMA, RomanSetu

- Strong English capabilities of base LLMs
- Less compute-requirements

Extending English LLMs to Non-English Languages



Vocabulary Expansion



Vocabulary: Set of tokens (basic I/O units)

LLM Vocabulary Properties

- Finite vocabulary size
- Subword units: basic units are smaller than words
- Open vocabulary: all words can be defined as concatenation of subwords

What if vocabulary is under-represented?

Fertility = Average number of tokens per word

Unknown characters (BPE-based vocab)	UNK vocab item
Fallback to known characters (BPE-based vocab)	High Fertility
Fallback to bytes (Byte BPE-based vocab)	Even Higher Fertility

More memory consumption

More decoding time

Limit on longest processable sequence

Addressing Vocabulary issues

Status-quo (use suboptimal vocab)

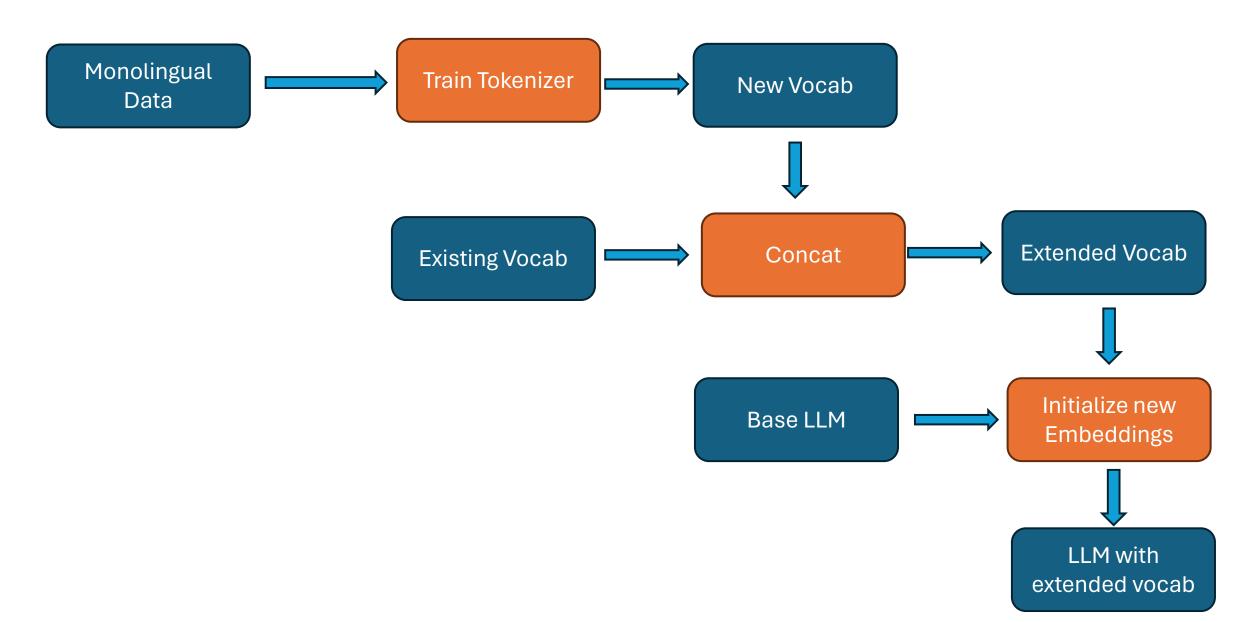
- × High fertility
- Increased sequence length
 - Increased inference time
 - Limit on max sequence length
- Inferior token representation
- Lesser pre-training required

Extending Vocabulary

- Low Fertility
- Reasonable sequence length
 - Decreased inference time
 - Longer sequences possible
- Increased softmax computation
- More pre-training required

Some evidence seems to suggest that extending vocabulary needs a lot of pre-training to align languages (0.5B tokens vs 30B tokens) (LmaByndEng)

How to extend tokenizer vocabulary?



Initialization of New Embeddings

Sampling from Random (Normal) Distribution

Simple

Changes existing vocab's probability distribution Large convergence time

Average of Existing Embeddings

Limited change in existing vocab's distribution Large convergence time [Avelnit]

Weighted Average of Existing Embeddings

Limited change in existing vocab's distribution Initializations like WESCHEL, OFA, FOCUS

WESCHEL uses similarities between vocab items across languages to decide weights; this improves convergence rates

Average Initialization [Avelnit]

Limitations of initialization from (Normal) Random distribution

- Incorrect generation in existing language
 - Large KL-divergence between pre- and post-expansion LMs for existing vocabulary
- No reason for fast convergence

A simple solution: Initialize new tokens to average of embeddings of existing tokens

- Low KL-divergence between pre- and post-expansion LMs for existing vocabulary
- Greedy decoding with prefix of existing tokens will result in output from existing tokens
- A general result: the above applies if new embeddings are in the convex hull of existing embeddings

A practical solution: We want to avoid all new embeddings been initialized to same value

Add small random noise to the average embeddings

However, this method does to give any solution to improve convergence in continued pre-training

Weighted Average Initialization

[WESCHEL]

- Target token embeddings as weighted average of source token embeddings
- Token weights based on source-target token similarities based on external static pre-trained word embeddings

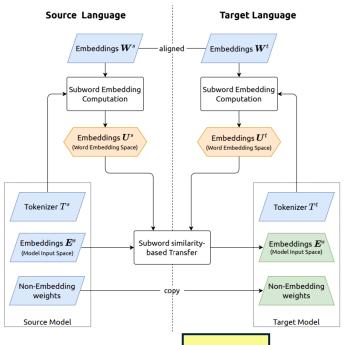
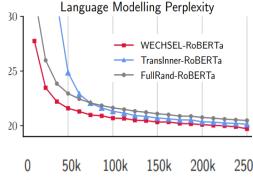


Figure 1: Summary of our WECHSEL method. We show inputs, intermediate results and outputs.

$$\boldsymbol{e}_{x}^{t} = \frac{\sum_{y \in \mathcal{J}_{x}} \exp\left(s_{x,y}/\tau\right) \cdot \boldsymbol{e}_{y}^{s}}{\sum_{y' \in \mathcal{J}_{x}} \exp\left(s_{x,y'}/\tau\right)}$$



Model	Score@0		0	Score@25k			Score@250k		
Model	NLI	NER	Avg	NLI	NER	Avg	NLI	NER	Avg
WECHSEL-RoBERTa	78.25	86.93	82.59	81.63	90.26	85.95	82.43	90.88	86.65
TransInner-RoBERTa	60.86	69.57	65.21	65.49	83.82	74.66	81.75	90.34	86.04
FullRand-RoBERTa	55.71	70.79	63.25	69.02	84.24	76.63	75.28	89.30	82.29
XLM-R _{Base} (Final)	79.25	89.48	84.37	7					

Continued Pre-training

Faster convergence vs. baselines for

- LM perplexity
- Downstream performance

Results for small LMs -> embeddings contribute a large % of parameters

Will we see such convergence improvements for Large LMs?

More Methods and Findings

Extensions of WESCHEL

OFA (One-for-All): multilingual vocabulary, need to handle large vocab (OFA)

- Reduce embedding dimension (inspired from ALBERT)
- Source embedding factorization with SVD for dimensionality reduction
 - Co-ordinates: language-dependent
 - Primitives: language-independent
- Projection of source co-ordinates to target co-ordinates like WESCHEL

FOCUS: Target token embeddings as weighted average of **overlapping** source token embeddings (FOCUS)

Summary

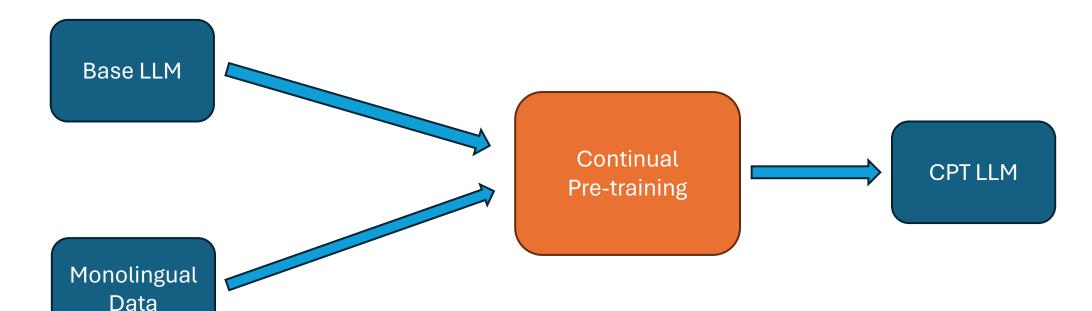
Can we do better than random initialization?

- Embeddings which initialize new tokens based on similarity with older embeddings do better
- Faster convergence
- Slightly better downstream performance
- Results mostly for smaller LMs and decoder LMs

Is vocabulary expansion better than relying to initial sub-optimal vocab?

- Vocab expansion might require lot of pre-training for alignment
- Will vocabulary extension lead to lower performance on English?
 - If initialized embeddings are in convex hull, greedy decoding result does not change

Continual Pre-training



Train on document-level data

Finetuning on long, coherent sequences helps model learn and correlate different pieces of knowledge

Causal Language Modeling Objective

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_T) = \prod_{t=1}^{T} p(x_t | \mathbf{x}_{< t})$$

To avoid forgetting English competence and knowledge

- Include English in the pre-training data
- Finetune-only small number of adapter parameters (ChineseLLama, OpenHathi)

Why do continual pre-training?

Language competence/fluency in target language

	L(0)	L(10k)	L(100k)	L(1M)
Chinese	10.151	8.697	6.634	5.249

Perplexity reduces with increase in pre-training corpus size (LmaByndEng)

Improve alignment b/w English and target language

Language	Base LLM	After CPT
Gujarati	0.39	0.46
Hindi	0.40	0.44
Marathi	0.44	0.48

Cosine similarities between English and target languages increases with CPT (RomanSetu)

Provide required knowledge in target language for better understanding

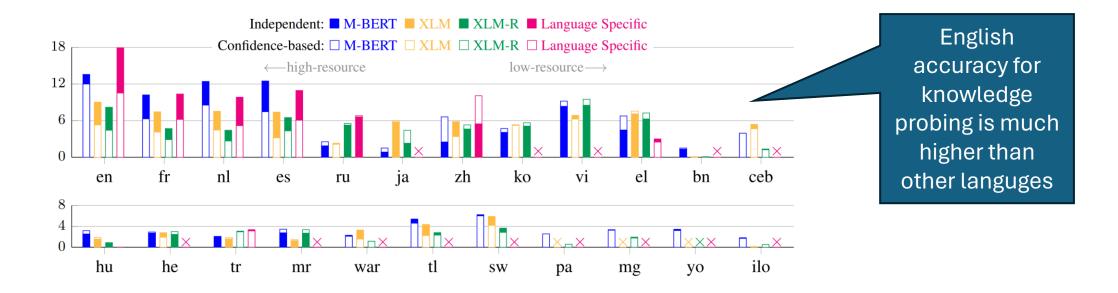
- LMs better at using in-language knowledge vs. cross-lingual transfer (Xfactr, MLAMA)
- Incorporate cultural-specific knowledge capture in native language corpora only

Most multilingual models can't transfer knowledge in English to other languages

Knowledge Probing Task → Predict missing tokens which capture model's knowledge

fact 〈Bloomberg L.P., founded_in, New York〉 en prompt [X] was founded in [Y].

es sentence	Bloomberg L.P. fue funda	da en ⟨ma	$ ask\rangle \times 1 \sim 5$
	prediction	#tokens	confidence
es outputs	2012	1	-1.90
	Nueva York	2	-0.61
	EE. UU	3	-1.82
	Chicago, Estados Unidos	4	-3.58
	2012 Bloomberg L.P	5	-3.06



Results on Knowledge Probing task shows that non-English languages don't have enough data

Improving Cross-lingual Transfer in Pre-training

- Using Parallel/Translated Data
- Using Romanized Representation

Why?

- Help improve cross-lingual alignment
- Make knowledge available in English in the target languages
- Help translation task

Using Parallel/Translated Data

Using parallel data (Tower, Palm2, PolyLM, OpenHathi, MTDataPretrain)

- Train on document/paragraph pairs
 very little availability
- Train on sentence pairs
 modest availability depending on language pair
- MT Data modestly useful for NLU (results on encoder LMs) (PrimerPMLM)
 - More investigation needed

Using Machine Translated data (IndicMonoDoc)

Use off-the-shelf MT data to generate target language data at scale

needs a decent MT model

- Model training includes translated documents
- Some evidence to show that translated documents can achieve performance close to pre-training with original documents

Need better to understand impact of translation quality

Using Parallel/Translated Data (1)

Using human-written parallel data (Tower, Palm2, PolyLM, OpenHathi, MTDataPretrain)

- Train on document/paragraph pairs
 very little availability
- Train on sentence pairs
 modest availability depending on language pair

Useful for translation task (Tower, OpenHathi)

No systematic results on utility of parallel data in pre-training

Previous work

- Encoder-only models & NLU tasks → parallel data has limited utility (PrimerPMLM)
- Encoder-decoder models & NLG tasks → don't know

Using Parallel/Translated Data (2)

Using Machine Translated data (IndicMonoDoc)

Use off-the-shelf MT data to generate target language data at scale

- needs a decent MT model
- Model training includes machine translated documents
- Pre-training on translated documents slightly inferior to original documents
 - Translation quality filtering + using small original data makes result comparable
- For small LMs, synthetic data might outperform original data

(a) Results on Hindi

		NLU					NLG				
Model	iXNLI	bbc-a	iitp-mr	iitp-pr	midas	Avg.	Headline Gen.	Sentence Summ.	Question Gen.	Wikibio	Avg.
HI-clean	73.61	81.75	72.58	79.73	80.34	77.60	27.54	23.64	24.84	52.16	32.04
syn-HI_en-unfiltered	72.87	77.92	64.36	76.22	79.91	74.26	27.29	22.93	24.22	50.14	31.14
syn-HI_en-unfiltered+10%	74.63	78.36	67.75	77.46	80.17	75.67	_	-	-	-	-
syn-HI_en-filtered	74.75	81.06	69.03	78.58	79.73	76.63	27.15	23.10	24.41	49.88	31.13
syn-HI_en-filtered+10%	74.49	80.94	71.61	79.92	80.64	77.52	_	-	-	-	-

Romanized Representation (RomanSetu)

Challenges with non-Latin script languages

- High-fertility/data loss for under-represented vocab
- Poor representation quality
- Vocab extension requires lot of pre-training (Lai et al . 2023)

```
<s> चारों अंतरिक्ष यात्री बेंगलुरु में भारतीय अंतरिक्ष अनुसंधान संग<०x६०><०x४४><mark><०x४०>न</mark> (<०x६०><०x४४>
<०x87>सरो) की अंतरिक्ष यात्री सुविधा में प्रशिक्षण ले रहे हैं।<०x०४> (130 tokens)
```

<s> ch<mark>aaron</mark> antarik<mark>sh ya</mark>atree b<mark>engal</mark>uru mein bhaarateey antar</mark>iksh an<mark>usand</mark>haan sang<mark>athan (isaro) kee</mark> antarik<mark>sh ya</mark> atree su<mark>vidha</mark> mein prashikshan le rahe hain.<0x0A> (63 tokens)

Pre-train on romanized corpora

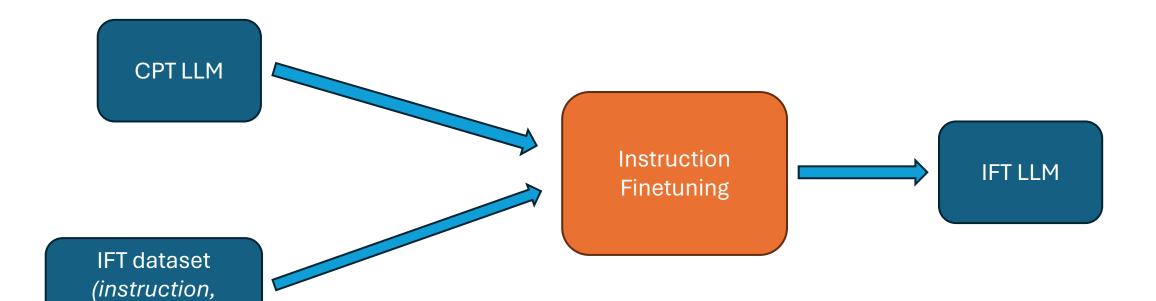
- Natural transliteration
- Fixed Romanization schemes

Language	N	R
Gujarati	18.44	3.39
Hindi	7.36	2.98
Malayalam	12.85	5.04
Marathi	8.91	3.64
Tamil	12.11	4.89

Language	E - N	E - R
Gujarati	0.39	0.47
Hindi	0.40	0.50
Malayalam	0.40	0.46
Marathi	0.44	0.48
Tamil	0.44	0.43

Romanized fertility more than 2x lower than native script fertility Romanized representations are better aligned to English than native script representations

Instruction Tuning



Train on in-language IFT dataset

Input, output)

Sources of IFT dataset

Quality and diversity of IFT dataset

Supervised Modeling Objective

$$\ell_{\text{CE}}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{|\mathcal{V}|} y_j \log(\hat{y}_j)$$
 $\mathcal{L}_{\text{SFT}} = \frac{1}{N} \sum_{i=1}^{N} \ell_{\text{CE}}(\mathbf{y}_i, \mathcal{M}_{\theta}(\mathbf{x}_i))$

To retain English task performance

Include English in the IFT training

Instruction Tuning Tasks

Variety of tasks/objectives to improve non-English performance

- English Data IFT
- In-language IFT with Machine Translated Data
- Parallel Data
- Monolingual Data
- Romanized IFT Data
- Cross-lingual Thought Data
- Cross-lingual IFT Data
- Code-switched IFT Data

Let's look at these tasks in detail

Using English IFT Dataset

- Instruction tune the model on English instruction dataset
- Evaluate on non-English data → Zero-shot cross-lingual evaluation
- Instruction tuning on English important to retain English capabilities

Using Machine Translated IFT Dataset

- Translate English instruction tuning datasets into the language
- Fine-tune model on translated dataset

Task	BeleBele QA	MKQA	XL-Sum
	Accuracy	F1	Rouge-L
English IFT	45.58	36.48	8.42
Language IFT	48.28	37.95	15.87

Average performance across many languages; src: SDRRL

Creating Translated IFT Data

Choice of Translation Engine

- Off-the-shelf NMT systems (Airavat): higher quality, particularly for low-resource
- GPT (Okapi): can do translation taking the entire context of input/output

		avg.	avg.
	#langs.	chrF	BLEU
ChatGPT (0-shot)	203	32.3	16.7
ChatGPT (5-shot)	203	33.1	17.3
GPT-4	20	44.6	24.6
NLLB	201	45.3	27.1
Google	115	52.2	34.6

Comparison of various translation engines
Sentence-level
(ChatGptMT)

Model])			
1,1000	News	Social	Fiction	Q&A	Ave.
Google	1.9/2.0	1.2/1.3	2.1/2.4	1.5/1.5	1.7/1.8
DeepL	2.2/2.2	1.3/1.1	2.4/2.6	1.6/1.5	1.9/1.9
Tencent	2.3/2.2	1.5/1.5	2.6/2.8	1.8/1.7	2.1/2.1
GPT-3.5	2.8/2.8	2.5/2.7	2.8/2.9	2.9/2.9	2.8/2.8
GPT-4	3.3/3.4	2.9/2.9	2.6/2.8	3.1/3.2	3.0/3.1

Comparison of various translation engines

Document-level

(ChatGptMT)

Creating Translated IFT Data (2)

What to Translate

• Instruction, Input, Output (Okapi, Airavat, xLLama, SDRRL)

- Input, Output (BLOOMZ)
 - English instruction is a common usecase
 - Models are good at English Instruction following

Quality Filtering

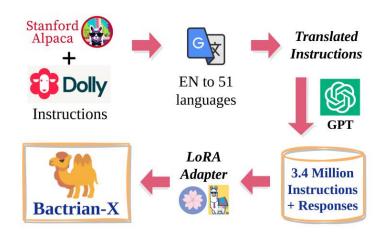
High quality examples are important for instruction tuning

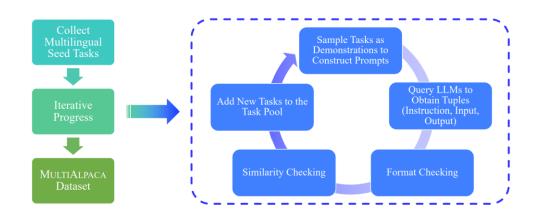
- Use an MT evaluation metric like COMET-QE to identify bad translations
- Rule-based filters to avoid code examples, etc. that are difficult to translate

Creating Translated IFT Data (3)

What to Translate

- Instruction, Input (BactrianX)
 - Give translated Instruction & Input
 - Generate response using GPT in the target language
 - Language/culture-specific examples
- Seed Instructions (PolyLM, SeaLLM)
 - Generates the entire examples from strong LLM like GPT in target language
 - Language/culture specific examples, but quality/diversity might be issue





Using Parallel Data

Translation is a *special* task for multilingual IFT models

- Teaches the model to translate
- Aligns English and language representations better
- Improves performance on other downstream tasks
- Parallel data and translated IFT data both help

86 r WN	AT23					
	GPT-4					
84 TOWERINSTRUCT-7	В					
82 - Gemma 7B	al-8x7B-Instruct LLaMA-2 70B					
80 LLaMA-2 13B Mistral-7B-Instruct-v0.2						
LLaMA-2 7B	★ NLLB 54B					
78 7 13	46 54 70					
Model size (# bi	llion parameters)					
Results for translation task						

ct match) mLAMA (exact match) XLSum (Rouge-1)
5.3 9.0
5.8 27.1
21.9 25.5
30.4 28.3

Results on Chinese for various Tasks	Results on	Chinese	for vari	ous Tasks
--------------------------------------	------------	---------	----------	-----------

Instruction-tuning Data				
Alpaca-En	16.1	13.7	34.1	26.7
Alpaca-En+En-Zh	33.6	35.1	42.2	38.0
Alpaca-En+Alpaca-Zh	33.1	35.1	50.1	48.0
Alpaca-En+Alpaca-Zh+En-Zh	37.0	42.3	50.8	51.8

Using Monolingual Data

- "Translationese IFT Data" → output language might not be fluent and highquality
- Expose model to monolingual target language data during IFT
- Incorporate a task that helps model generate fluent output in target language

Task 1: Standard next-word prediction (CLM) Switch between IFT and CLM objective in mini-batches

Task 2: Sentence Completion Task Only IFT objective required

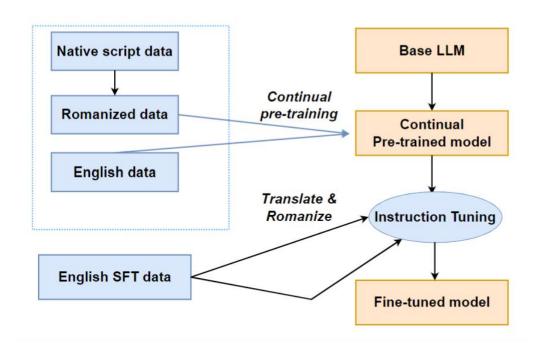
Question: Complete the following sentence in *Indonesian* according to its context.

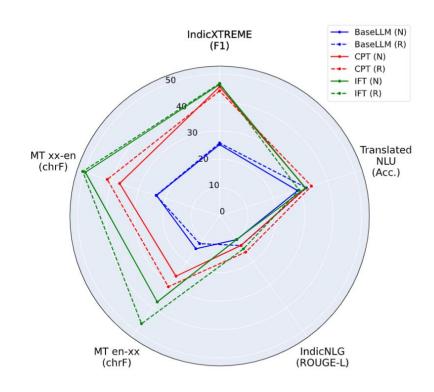
Sang rubah cokelat cepat

Answer: Sang rubah cokelat cepat melompati anjing malas.

Romanized Representation

Just like pre-training, use romanized representation for IFT too





- Continual Pre-training with romanized data is crucial
- NLG task performance improves with romanized data
- NLU task performance is on par, though more efficient

Cross-Lingual Thought Prompting (XLT)

Ask the model to implicitly think in a different language

Monolingual QA

詹姆斯·韦伯望远镜是什么? (What is James Webb Telescope?) Respond in Chinese.

詹姆斯·韦伯望远镜是.....??? (James Webb Telescope is???)

詹姆斯·韦伯望远镜是什么?

(What is James Webb Telescope?)

Think in English, then respond in Chinese.

Monolingual QA with 'thinking in English' aka

Cross-lingual Thought Prompting Let me interpret the instruction in English: What is James Webb Telescope? So the English response is: James Webb Telescope is an infrared space telescope.....

詹姆斯·韦伯望远镜是一个红外线太空望远镜! (James Webb Telescope is an infrared space telescope!) Model asked to generate intermediate English artifacts

No explicit translation call

The LLM itself is used as a translator implicitly

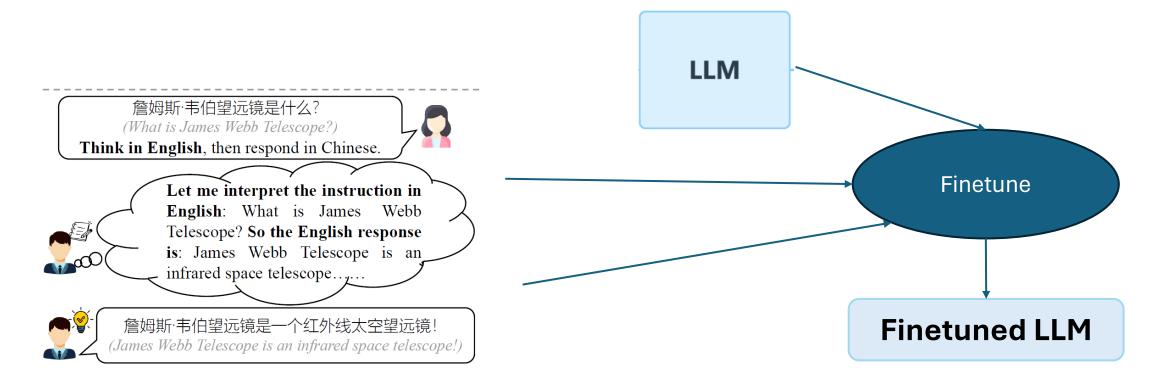
Multiple inferences are avoided

Input in original language is available to LLM

Increased token length for model, Reduces possible input token size

(XLT,PLUG)

TaCo: Instruction tuning with Cross-Lingual Thought data



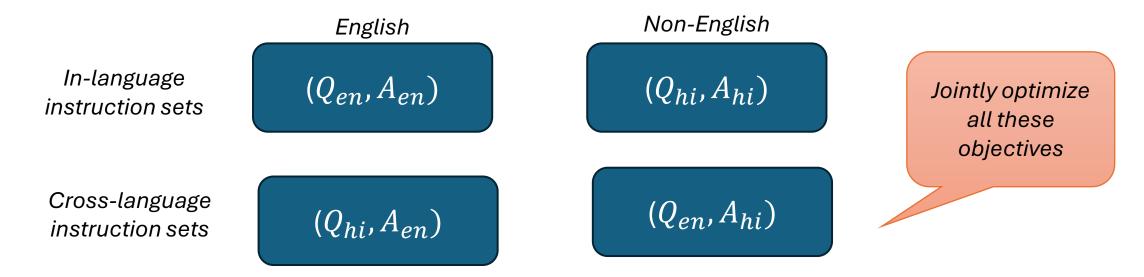
Limitations

- Reduced maximum sequence length
- Increased latency

	Standard IFT	TaCo
Nepali	39.3	88.1
Persian	46.5	83.9

Evaluation on translated Vicuna Benchmark with GPT4

Cross-Lingual Instruction Tuning



 Q_{hi} : मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे 5 संक्षिप्त बिंदु दीजिये।

A_{en} :

- 1. Prioritize tasks based on importance and urgency.
- 2. Set specific goals with deadlines (SMART goals).
- 3. Use time management tools like calendars and apps.
- 4. Minimize distractions to maintain focus.
- 5. Regularly review and adjust your schedule for better efficiency.

Cross-lingual instruction help the model to align languages and think in English

Avoids intermediate English generation of Cross-lingual Thought Prompting

Code-switched Instruction Tuning

Code-switching: alternating between two or more languages in conversation

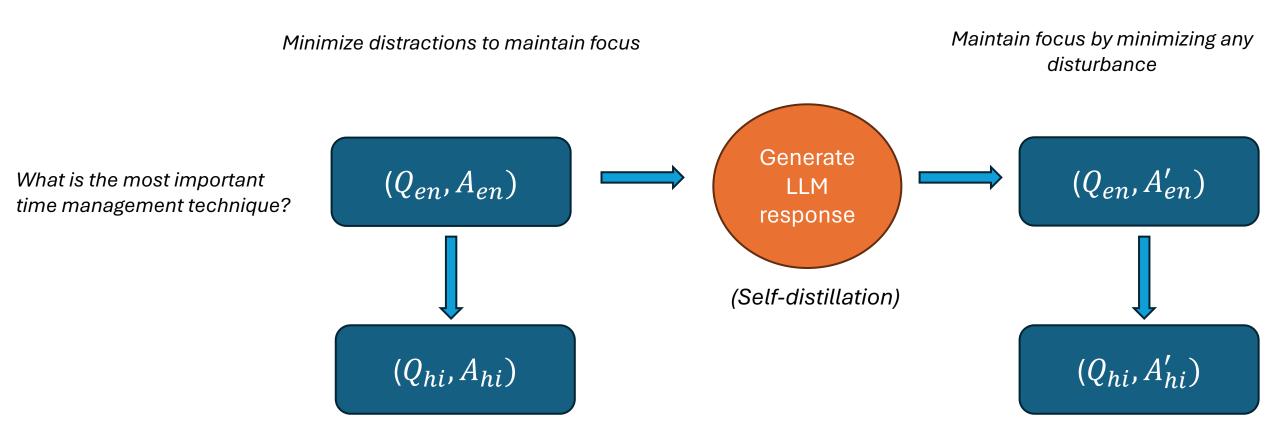
Generate code-switched instruction by replacing some source words with their target language translations

 Q_{hi} : मैं अपने $rac{\mathsf{time}}{\mathsf{time}}$ प्रबंधन $rac{\mathsf{skill}}{\mathsf{skill}}$ को कैसे स्धार सकता हूँ? मुझे 5 $rac{\mathsf{brief}}{\mathsf{brief}}$ बिंद् दीजिये।

- 1. महत्व और तात्कालिकता के आधार पर कार्यों को प्राथमिकता दें।
- 2. समय सीमा (स्मार्ट लक्ष्य) के साथ विशिष्ट लक्ष्य निर्धारित करें।
- 3. कैलेंडर और ऐप्स जैसे समय प्रबंधन टूल का उपयोग करें।
 4. फोकस बनाए रखने के लिए विकर्षणों को कम करें।
- 5. बेहतर दक्षता के लिए नियमित रूप से अपने शेड्यूल की समीक्षा करें और उसे समायोजित करें।

Code-switching help the model to align languages better at sub-sentence level

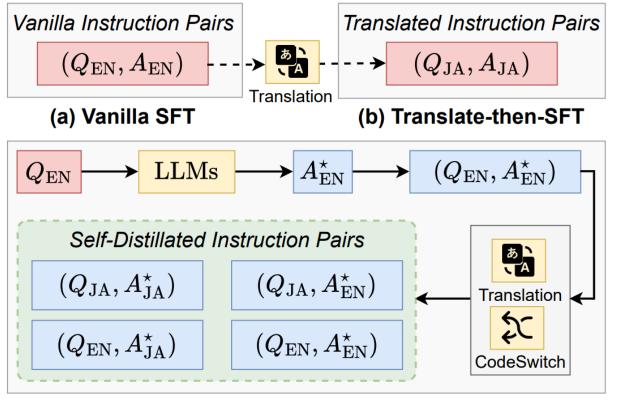
Self-Distillation from Resource Rich Language



Using the model's own responses can help uses the model's own representation space better

SDRRL: Putting it all together

(SDDRL)



Cross-lingual Instructions

Translation Task

Sentence Completion Task

(these tasks are added so model preserves native language competency)

(c) Self-Distillation from Resource-Rich Languages (Ours)

Summary Results

(SDDRL)

	BELE.	XL-SUM	FLORES	MKQA	AVG.
			arget Langua		
CET					20.01
SFT	42.24	<u>16.48</u>	18.45	38.86	29.01
T-SFT	42.77	15.32	16.59	43.40	29.52
CIT	42.53	15.75	20.49	43.70	30.62
XCOT	41.19	15.79	17.21	42.04	29.06
SDRRL	43.67	17.89 25.86		44.63	33.01
	Perfo	rmance on E	nglish Langu	age	
SFT	60.19	15.25	28.49	39.62	35.89
T-SFT	58.70	15.63	23.72	37.43	33.87
CIT	58.66	15.42	18.31	36.67	32.27
XCOT	57.73	14.90	23.96	37.94	33.63
SDRRL	60.67	16.24	29.47	40.32	36.68

(This summary is for the SeaLLM backbone LLM, results in main paper are for LLama)

SFT: FT on English data

T-SFT: source and target translated

CIT: target translated

XCOT: source translated + source code-

switching

Bringing together all these objectives and data augmentations:

- Helps improve overall response quality across multiple tasks
- Retains English performance

Ablation Studies (1) (SDDRL)

		NLU Avg.		NLG	AVG.
		TAR.	ENG	TAR.	ENG
1	Full Method	50.58	66.29	28.24	31.69
2	- $\mathcal{D}_{\mathrm{TL}}$ and $\mathcal{D}_{\mathrm{LT}}$	49.56	65.93	26.15	30.55
3	- $\mathcal{D}_{\mathrm{synth}}$ + \mathcal{D}	48.59	65.10	25.16	30.10
4	- $\mathcal{D}_{ m mt}$ and $\mathcal{D}_{ m comp}$	50.41	66.01	26.61	30.19
5	- Code Switching	50.37	65.94	27.13	30.69
6	Only $\mathcal{D}_{\mathrm{mt}}$ and $\mathcal{D}_{\mathrm{comp}}$	41.25	61.61	17.89	22.28

Table 6: Ablation study. Average scores of target language (TAR.) and English (ENG) on natural language understanding task (NLU, including BELEBELE) and natural language generation tasks (NLG, including FLO-RES, XL-SUM ROUGE-L, and MKQA) are reported.

- Using the LLMs own responses is a very useful method to improve cross-lingual transfer
- The MT and sentence completion tasks are very useful
- The cross-lingual instruction tuning tasks are also complementary
- Code-switching (on input side) has modest benefits

Ablation Studies (2) (PLUG)

Training Method Comparison	Chinese		Korean			Italian		Spanish				
	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$	Win%	Loss%	$\Delta\%$
English-Centric Foundation LLM: LLaMA-2-13B												
PLUG vs. Pivot-Only	70.9	19.1	+51.8	76.5	12.7	+63.9	67.6	17.8	+49.8	64.0	20.9	+43.1
PLUG vs. Mono. Response	58.0	25.2	+32.8	64.1	19.9	+44.2	50.3	25.8	+24.5	53.0	27.6	+25.5
PLUG vs. Mono.+Translation	53.0	28.0	+25.1	62.7	20.1	+42.6	50.1	26.6	+23.5	51.3	25.6	+25.7
PLUG vs. Mono.+Code-Switch	50.2	31.6	+18.6	55.2	25.6	+29.6	46.2	30.9	+15.3	48.4	29.9	+18.5

PLUG: Thinking in pivot language Pivot-only: IFT On pivot language

Mono-Response: IFT on pivot and target language

Mono + Translation: add translation task to Mono-Response

Mono + Code-Switch: add cross-lingual instruction tuning to Mono-Response

Evaluation with GPT4

- Including Translation task is useful
- Training on cross-lingual thought data is most effective
- Cross-lingual instruction tuning is the best next, closes gap on cross-lingual thought data

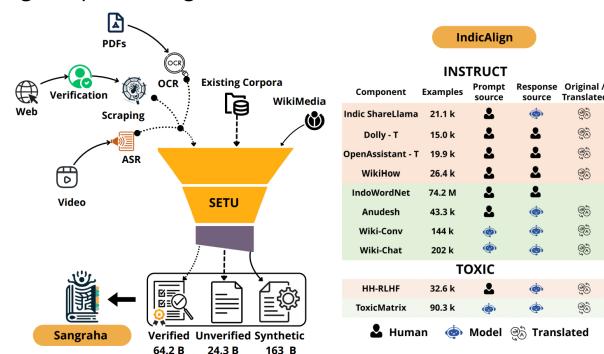
The Indian Language LLM Scenario

IndicLLMSuite

https://arxiv.org/abs/2403.06350 https://github.com/Al4Bharat/IndicLLMSuite

- Pre-training data for 22 languages
 - 88B tokens original
 - 162B tokens synthetic
- Instruction-tuning data generated from Llama and translated
- Harmless Response Generation data created
- SETU: Opensource pipeline for data crawling, filtering and processing

Focus on data scale and quality



https://www.sarvam.ai/blog/announcing-openhathi-series

https://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base

- Base LLM for Hindi
- Trained on large Hindi monolingual and Hindi/English parallel corpora
- Vocabulary expanded to include Hindi tokens
- Bilingual pre-training to align Hindi and English
- Only LoRA adapters trained to efficiently use compute and prevent forgetting English knowledge
- Performs well on translation, code-mixing, etc. after finetuning

Airavata

https://arxiv.org/abs/2401.15006

https://ai4bharat.github.io/airavata/

- Instruction tuned Hindi LLM based on OpenHathi
- Trained on translated SFT data from truly open-source datasets FLAN, OpenAssistant, Dolly, LymSys-Chat and MT task
- Finetuning and Evaluation Benchmark IndicInstruct created

Many other open LLM efforts

Navarasa, various language specific-Llama extensions for Odia, Tamil, Telugu, Kannada, etc.

Navarasa

- Instruction tuned Indic LLM based on Gemma
 - 15 languages
 - Finetuned on translated ALPACA (IndicALPACA), Samvaad
- Gemma as lower fertility compared to Llama for Indic languages

https://ravidesetty.medium.com/introducing-indic-gemma-7b-2b-instruction-tuned-model-on-9-indian-languages-navarasa-86bc81b4a282

Other Efforts in the works

- Ola Krutrim
- Mahindra Indus
- Corover BharatGPT
- IIT Bombay Consortium BharatGPT

Summary

- Rapid Advances in Multilingual LLMs
- Extending strong English LLMs to other languages is an effective and efficient direction
- Vocabulary expansion to support new languages and make LLMs efficient, but challenges in achieving convergence
- Continual pre-training important to improve language competence
- Lot of work on aligning languages in the instruction tuning stage

Future Directions

Modeling/Training

- Improving cross-lingual transfer
- Use of synthetic data
- Better "thinking" in English
- Composing Task and Language skills efficiently
- Small Multilingual models

Data/Resources

- Scalable evaluation methods for multilingual LLMs
- Creation of multilingual benchmarks
- Collection of large-scale culture-specific text corpora

Multilingual Pre-training Corpora

- MADLAD-400
- CulturaX
- ROOTS
- mC4
- OSCAR
- CC100
- Glot500-c
- Sangraha
- SEA-LION-PILE

Notable Projects on Extending English LLMs

- BLOOM+1
- ChineseLLama
- Bactrian-X
- Okapi
- SeaLLM
- TOWER
- ALMA and ALMA-R
- AceGPT

Thanks

If you find this work useful, please cite it in your work

```
@online{kunchukuttan2024extendllm,
author = {{Anoop Kunchukuttan}},
title = {Extending English Large Language Models to New Languages: A Survey},
url = {https://anoopkunchukuttan.gitlab.io/publications/presentations/extend_en_llms_apr2024.pdf},
date = {2<sup>nd</sup> April 2024},
urldate = {2<sup>nd</sup> April 2024}
}
```

Acknowledgments

Based on work, explorations and discussions with many colleagues ...

Raj Dabre, Ratish Puduppully, Jay Gala, Thanmay Jayakumar, Jaavid Aktar Husain, Aswanth Kumar, Mohammed Safi Ur Rahman Khan, Mitesh Khapra, Priyam Mehta, Diptesh Kanojia, Rudra Murthy, Nandini Mundra, Aditya Nanda Kishore, Sumanth Doddapaneni, Rupesh Mehta, Manish Gupta

Contact: anoop.kunchukuttan@gmail.com

Home Page: https://anoopkunchukuttan.gitlab.io