

Al4Bharat

An IIT Madras Initiative

https://indicnlp.ai4bharat.org

Mitesh M. Khapra Associate Professor *IIT Madras*

Pratyush Kumar Researcher, *Microsoft* Adjunct Faculty, *IIT Madras*

Anoop Kunchukuttan Senior Applied Researcher *Microsoft*

+ Many hard-working students and volunteers

Tutorial at ICON 2021, Dec 2021

Let us solve India's challenges with AI

Al4Bhārat is a non-profit, open-source community of engineers, domain experts, policy makers, and academicians collaborating to build AI solutions to solve India's problems, today.

Mission Statement

Bring parity with English in AI tech for Indian languages with open data and open source contributions

We want to be the Apache for Indian Languages AI stack

Build an ecosystem of datasets, models, partners and stakeholders to advance IndicNLP

Tools/Models

Corpus Processing Tools

Domain-specific Corpora

Raw Corpora

Evaluation Datasets
Training Datasets
Corpus Mining Tools
Corpus Processing Tools
Domain-specific Corpora
Raw Corpora

Developer Tools								
High-performing models	Deployable models							
Evaluation Datasets								
Training Datasets								
Corpus Mining Tools								
Corpus Processing Tools								
Domain-specific Corpora								
Raw Corpora								

Applications							
Input/content generation tools							
Developer Tools							
High-performing models Deployable models							
Evaluation Datasets							
Training Datasets							
Corpus Mining Tools							
Corpus Processing Tools							
Domain-specific Corpora							
Raw Corpora							

Goal

for 22 languages

Full NLP stack

Text Generators

Inference Engines

Text Analysers

QA

00

පී පී

Named Entity

Recognition

Translation

Dialog

NLI

Summarisation

٠	٠	۲	•	٠	۰	•	•

....

Paraphrase Detection

Topic

Content

Classification Filters

Sentiment

Analysis

Keyboards

Spell checkers

Standardise fonts

-	-	-	-	-	-	_
•	٠	٠	•	•	•	

•

Founding Principles

- Move Fast solve problems today
- Mine Data collective intelligence, smart annotation
- Think Big22 languages, industry-scale models
- **Deliver Performance** Best-in-class models, compute-efficiency
- Democratize Indic NLP open-source models and datasets
- **Do Good Science** publish in top-tier conferences

What have we done so far?

What have we done so far?

Basic Infrastructure: Raw corpora & core language models

word embeddings

What have we done so far?

Data and models for various end tasks

Samanantar

IndicWav2Vec

Parallel corpus, translation models between English & 11 Indic languages Large-scale raw audio corpora & ASR models for 9 Indian languages

Datasets and efficient

INCLUDE

models for isolated Indian Sign Language

Input Tools

Romanized keyboards for under-represented languages

IndicNLP Catalog

Evolving, collaborative catalog of Indian language NLP resources

Please add resources you know of and send a pull request

- Major Indic Language NLP Repositories
- Libraries and Tools
- Evaluation Benchmarks
- Standards
- Text Corpora
- Unicode Standard
- Monolingual Corpus
- Language Identification
- Lexical Resources
- NER Corpora
- Parallel Translation Corpus
- Parallel Transliteration Corpus
- Text Classification
- Textual Entailment/Natural Language Inference
- Paraphrase
- Sentiment, Sarcasm, Emotion Analysis
- Question Answering
- Dialog
- Discourse
- Information Extraction
- POS Tagged corpus
- Chunk Corpus
- Dependency Parse Corpus
- Co-reference Corpus
- Models
 - Word Embeddings
 - Sentence Embeddings
 - Multilingual Word Embeddings
 - Morphanalyzers
 - SMT Models
- Speech Corpora
- OCR Corpora
- Multimodal Corpora
- Language Specific Catalogs

Featured Resources

- Al4Bharat IndicNLPSuite: Text corpora, word embeddings, BERT for Indian languages and NLU resources for Indian languages.
- IIT Bombay English-Hindi Parallel Corpus: Largest en-hi parallel corpora in public domain (about 1.5 million semgents)
- CVIT-IIITH PIB Multilingual Corpus: Mined from Press Information Bureau for many Indian languages. Contains both English-IL and IL-IL corpora (IL=Indian language).
- · CVIT-IIITH Mann ki Baat Corpus: Mined from Indian PM Narendra Modi's Mann ki Baat speeches.
- INLTK: INLTK aims to provide out of the box support for various NLP tasks that an application developer might need for Indic languages.
- Dakshina Dataset: The Dakshina dataset is a collection of text in both Latin and native scripts for 12 South Asian languages. Contains an aggregate of around 300k word pairs and 120k sentence pairs. Useful for transliteration.

Parallel Translation Corpus

- IIT Bombay English-Hindi Parallel Corpus: Largest en-hi parallel corpora in public domain (about 1.5 million semgents)
- CVIT-IIITH PIB Multilingual Corpus: Mined from Press Information Bureau for many Indian languages. Contains both English-IL and IL-IL corpora (IL=Indian language).
- CVIT-IIITH Mann ki Baat Corpus: Mined from Indian PM Narendra Modi's Mann ki Baat speeches.
- · PMIndia: Parallel corpus for En-Indian languages mined from Mann ki Baat speeches of the PM of India (paper).
- Indian Language Corpora Initiative: Available on TDIL portal on request
- OPUS corpus
- · WAT 2018 Parallel Corpus: There may significant overlap between WAT and OPUS.
- Charles University English-Hindi Parallel Corpus: This is included in the IITB parallel corpus.
- Charles University English-Tamil Parallel Corpus
- Charles University English-Odia Parallel Corpus v1.0
- Charles University English-Odia Parallel Corpus v2.0
- Charles University English-Urdu Religious Parallel Corpus
- IndoWordnet Parallel Corpus: Parallel corpora mined from IndoWordNet gloss and/or examples for Indian-Indian language corpora (6.3 million segments, 18 languages).
- MTurk Indian Parallel Corpus
- TED Parallel Corpus
- JW300 Corpus: Parallel corpus mined from jw.org. Religious text from Jehovah's Witness.
- · ALT Parallel Corpus: 10k sentences for Bengali, Hindi in parallel with English and many East Asian languages.
- FLORES dataset: English-Sinhala and English-Nepali corpora
- Uka Tarsadia University Corpus: 65k English-Gujarati sentence pairs. Corpus is described in this paper
- NLPC-UoM English-Tamil Corpus: 9k sentences, 24k glossary terms

Where and Why do we need Indic NLP solutions today?

Usage and Diversity of Indian Languages

- 4 major language families
- 22 scheduled languages
- 125 million English speakers
- 8 languages in the world's top 20 languages
- 30 languages with more than 1 million speakers

Internet User Base in India (in million)

Source: Indian Languages:

Defining India's Internet KPMG-Google Report 2017

Applications requiring Indian language support

Scalability Challenges for NLP solutions

We are faced with a huge data skew

Raw Text Corpora	a Wikipedia	English	6m
	articles	Hindi	150k
Parallel Corpora	Sentence	En-fr (OPUS)	500m
	pairs	En-hi (IITB)	1.5m
NER Corpora	Tokens	en (CoNLL 2003) hi (FIRE)	200k 40k
QA	Question-Answer	en (SQuAD 1.1)	100k
	Pairs	hi (MMQA)	4.6k

What is our approach?

Our Technical Direction

The Opportunity for Indian Language NLP

Our Technical Direction

Representation Learning

Traditional feature engineering requires linguistic resources

Let us look at a simple NLP application – Sentiment Analysis

Sandeep Reddy Vanga made a Telugu film named ARJUN REDDY, which had a kind of a deja vu of DEVDAS. Yet, it stood out due to the treatment, execution and performances. ARJUN REDDY became a cult success and now its Hindi remake KABIR SINGH is all set to hit theatres. So does KABIR SINGH turn out to be as good as or better than ARJUN REDDY? Or does it fail to stir the emotions of the viewers? Let's analyse.

Neutral

An example of a text classification problem

A Machine Learning Pipeline for Text Classification

Simple Features

Bag-of-words (presence/absence)

Well-made	hit	script	lovely	boring	music
1	1	1	1	0	1

More features

- Bigrams: e.g. *lovely_script*
- Presence in [positive/negative] sentiment word list
- Negation words
- Is the sentence sarcastic (output from saracasm classifier?)

- These features have to be hand-crafted manually – repeat for domains and tasks
- **Need linguistic resources** like POS, lexicons, parsers for building features
- Can some of these features be discovered from the text in an unsupervised manner using raw corpora?

Distributed Representations

Can we replace the high-dimensional, resource-heavy document feature vector

with

- low-dimensional vector
- learnt in an unsupervised manner
- subsumes many linguistic features

Distributional Hypothesis

"A word is known by the company it keeps" - Firth (1957)

"Words that occur in similar contexts tend to have similar meanings" - Turney and Pantel (2010) He is **unhappy** about the failure of the project

The failure of the team to successfully finish the task made him sad

• The distribution of the context defines the word

unhappy

water

sad

 Can define notion of similarity based on contextual distributions

> Similarity of words can be defined in terms of vector similarity: Cosine similarity, Euclidean distance, Mahalanobis distance

Similarity across languages

Contextual representation of words

A Typical Deep Learning NLP Pipeline

Application specific Deep Neural Network layers

(text or otherwise)

Text Embedding

Multilinguality

But we still need training data for each language?

Represent semantically similar language artifacts in the same vector space

Represent semantically similar language artifacts in the same vector space

Represent semantically similar language artifacts in the same vector space

How does multilinguality help?

How does multilinguality help?

Multilingual Indian Language en Translation Models

(Zoph et al., 2016; Nguyen et al., 2017; Lee et al., 2017; Dabre et al., 2018)

We want Malayalam
English translation
but little parallel corpus is available
We have lot of Tamil
English parallel corpus
English Indian Languages

How do we support multiple target languages with a single decoder?

A simple trick!: Append input with special token indicating the target language

<u>Original Input</u>: *France and Croatia will play the final on Sunday*

<u>Modified Input</u>: France and Croatia will play the final on Sunday <ta>

Still a challenging problem

Training Multilingual NMT systems

Joint Training

Transfer Learning

Zeroshot Translation into English

Zeroshot Translation between Indian languages

te 🗆 ta

Language Relatedness

Why are Indian languages related? Related Languages Related by Contact Related by Genealogy Linguistic Areas Language Families Indian Subcontinent, Dravidian, Indo-European, Turkic Standard Average (Iones, Rasmus, Verner, 18th & 19th centuries, Raymond ed. European (2005))(Trubetzkoy, 1923)

Related languages may not belong to the same language family!

Cognates & Borrowed words in Indian Languages

Indo-Aryan

Dravidian

Indo-Aryan words in Dravidian languages

Other borrowings like echo words, retroflex sounds in other direction. (Subbarao, 2012)

English	Vedic Sanskrit Hindi		Punjabi	Gujarati	Marathi	Odia	Bengali
					chapāti,		
bread	Rotika	chapātī, roțī	roți	paũ, roțlā	poli, bhākarī	pauruți	(pau-)ruți
fish	Matsya	Machhlī	machhī	māchhli	māsa	mācha	machh
	bubuksha,						
hunger	kshudhā	Bhūkh	pukh	bhukh	bhūkh	bhoka	khide

English	Tamil	Malayalam	Kannada	Telugu	
fruit	pazham , kanni	pazha.n , phala.n	haNNu , phala	pa.nDu , phala.n	
ten	pattu	patt, dasha.m, dashaka.m	hattu	padi	

Sanskrit word	Language	Loanword	English	
cakram	Tamil	cakkaram	wheel	
matsyah	Telugu	matsyalu	fish	
ashvah	Kannada	ashva	horse	
jalam	Malayalam	jala.m	water	

Source: Wikipedia and IndoWordNet

Transfer Learning works best for related languages

Transformer models are powerful enough to learn multilingual representation but similarity priors (natural or induced) help

Motivation for:

- Building multilingual systems systems specific to language families
- Transfer learning from a related parent

(Kudungta et al, 2019) Encoder Representations cluster by language family

Key Similarities between related languages

On the occasion of India's Independence day, a programme was organized in American city of Los Angeles

Syntactic: share the same basic word order

Orthographic Similarity

Brahmi-derived Indic scripts are orthographically similar

Devanagari	अ आ इ ई उ ऊ ऋ ऌ ऍ ऎ ए ऐ ऑ ऒ ओ औ क ख ग घ ङ च छ ज झ
Bengali	অ আ ই ঈ উ ঊ ঋ ৯ এ ঐ ও ঔ ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট ঠ ড
Gurmukhi	ਅ ਆ ਇ ਈ ਉ ਊ ਏ ਐ ਓ ਔ ਕ ਖ ਗ ਘ ਙ ਚ ਛ ਜ ਝ ਞ ਟ ਠ ਡ ਢ ਣ ਤ ਥ
Gujarati	અ આ ઇ ઈ ઉ ઊ ઋ ઍ એ એ ઑ ઓ ઔ ક ખ ગ ઘ ઙ ચ છ જ ઝ ઞ ટ ઠ
Oriya	ଅ ଆ ଇ ଈ ଉ ଊ ଋ ଌ ଏ ଐ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଛ ଜ ଝ ଞ ଟ ୦ ଡ ଢ ଣ
Tamil	அ ஆ இ ஈ உ ஊ எ ஏ ஐ ஒ ஓ ஔ க ங ச ஜ ஞ ட ண த ந
Telugu	అఆఇఈఉఊఋ ఌఎఏఐఒఓఔకఖగఘఙచఛజఝ
Kannada	ಅ ಆ ಇ ಈ ಉ ಊ ಋ ಌ ಎ ಏ ಐ ಒ ಓ ಔ ಕ ಖ ಗ ಘ ಙ ಚ ಛ ಜ ಝ ಞ
Malayalam	അ ആ ഇ ഈ ഉ ഊ ഋ ഌ എ ഏ ഐ ഒ ഓ ഔ ക ഖ ഗ ഘ

- Largely overlapping character set, but the visual rendering differs
- highly overlapping phoneme sets
- Highly consistent grapheme-to-phoneme mapping

Script Conversion

- Read any script in any script
- Unicode standard enables consistent script conversion with a single rule

unicode_codepoint(char) - Unicode_range_start(L₁) + Unicode_range_start(L₂)

	0A8	0A9	0AA	0AB	0AC	0AD	0AE		098	099	09A	09B	09C	09D	09E
0		ઐ	δ	ર	ી	30	35	0	٩	ন্দ্র	ঠ	র	ী		শ্ধ
	11111	0A90	GAAD	OBAD	0AC0	OADO	0AE0		0980	0990	DARD	0980	09C0	HHH	0960
1	N	ઓ	3 BAA1		G GAC1		CE DAE1	1	ð		ড		2		R 09E1
2	0 0.482		8442	<mark>କ୍</mark> _{0AB2}	%		Nez MAE2	2	<u>୍</u>		U 9A2	ল	<u>ک</u>		0 0962
3	0 483	ઓ	SI SI	U DAB3	Q QAC3		Ce MES	3	0983	3	e		Q		3
4		ઔ	h		UN SA			4		3	0		Å.		
5	અ	5	થ	વ	0			5	অ	ক	থ				
	0A85	0A96	0AA5	0AB5	OAC5	AHH	11111	N.	0985	0995	09A5	71111			11111

As a developer, you can read text in a script you understand

Only a single mapping needed for Romanization too

Indian Language Speech sound Label set

(Samudravijaya & Murthy, 2012)

A simple and powerful property to utilize

relatedness between Indian languages

Pre-requisite to Neural Transfer Learning: Represent all data in a common script

Multilingual Transliteration

(Kunchukuttan, et al, 2018;2021)

Pool training sets

Malayalam	കോഴിക്കോട്	kozhikode
Hindi	केरल	kerala
Kannada	ಬೆಂಗಳೂರು	bengaluru

Convert to a common script

Malayalam	कोळिक्कोट्	kozhikode
Hindi	केरल	kerala
Kannada	बेंगळूरु	bengaluru

Train a joint transliteration model for multiple Indian languages to English & vice-versa

Example of Multi-task Learning

Similar tasks help each other

Zero-shot transliteration is possible

Perform Telugu

English transliteration
even if network has not seen that data

Traditionally organized as per sound phonetic principles

shows various symmetries Useful for unsupervised transliteration

6

Pr	imary vowel	IS	Short							Diphthongs			
		lr	nitial	Diacri	tic	Initial		Diac	ritic	 Initial		I Diacri	
Unroun	ded low centr	al 34	Г а	प	pa	आ	ā	पा	pā	8			
Unrou	inded high fro	nt इ	• I	पि	pi	ई	ī	पी	pī				
Rou	nded high bac	^к उ	u	पु	pu	ऊ	ū	पू	рū				
S	Syllabic varian	ts 74	!	पृ	bî	ॠ	ŗ	पृ	pŗ				
		ल	ļ	पू	pļ	ॡ	Ī	पू	pį				
Seco	ndary vowel	Is											
ι	Jnrounded fro	nt				ए	е	पे	pe	ऐ	ai	पै	pai
	Rounded bac	k				ओ	0	पो	ро	औ	au	पौ	pau
	Occlusive	es Vo	(3 iceless	plosiv	es		Vo	iced pl	losives	5	Na	isals	
		unaspi	rated	aspir	ated	una	spira	ated	aspir	ated			
	Velar	क	ka	ख	kha	J	Ţ	ga	घ	gha	ड	ńa	1
\frown	Palatal	च	ca	छ	cha	5	Ŧ	ja	झ	jha	স	ña	(
2	Retroflex	उ	ţa	ठ	ţha	6	5	d a	ढ	dha	ण	ņa	
	Dental	त	ta	थ	tha	द	ſ	da	ध	dha	न	na	ł
	Labial	Ч	pa	দ	pha	0	L	ba	भ	bha	म	ma	1
	Sonorants	and	fricati	ves			4)			(5)	
		Pala	atal	Retr	oflex	П	enta	al	Lat	hial			
>	Sonorants	य	ya	र	ra	ल	5	la i	व	va			
	Sibilants	হা	śa	ष	şa	₹	Ŧ	sa					
	Other lett	ore											
	other lett	ह	ha	ळ	ļa								

Lexical Similarity

Lexical Similarity

(Words having similar **form** and **meaning**)

• Cognates

a common etymological origin

roTI (hi)	roTIA (pa)	bread
bhai (hi)	bhAU (mr)	brother

• Loan Words

borrowed without translation

matsya (sa) matsyalu fish (te) pazha.m phala (hi) fruit (ta)

• Named Entities

do not change across languages

mu.mbal (hi)	mu.mbal (pa)	mu.mbal (pa)
keral (hi)	k.eraLA (ml)	keraL (mr)

• Fixed Expressions/Idioms

MWE with non-compositional

dALa mA kAlka kALu hovu (g

(gu)

Enables sharing of data across languages

Why it matters

भारता च्या स्वातंत्र्य दिना निमित्त अमेरिके तील लॉस एन्जल्स शहरा त कार्यक्रम आयोजित करण्यात आला bhAratA cyA svAta.ntrya dinA nimitta amerike tIla IOsa enjalsa shaharA ta kAryakrama Ayojita karaNyAta AlA

भारत के स्वतंत्रता दिवस के अवसर पर अमरीका के लॉस एन्जल्स शहर में कार्यक्रम आयोजित किया गया bhArata ke svata.ntratA divasa ke avasara para amarIkA ke losa enjalsa shahara me.n kAryakrama Ayojita kiyA gayA

On the occasion of India's Independence day, a programme was organized in American city of Los Angeles

Multilingual Indian Language en Translation Models

(Zoph et al., 2016; Nguyen et al., 2017; Lee et al., 2017; Dabre et al., 2018; Ramesh et al 2021;)

We want Malayalam
English translation
but little parallel corpus is available
We have lot of Tamil English parallel corpus

- Train models at the subword-level (BPE etc).
- Represent data in a common script

Similar trends for NLU and language models: Khemchandani et al. (2021), Dhamecha et al. (2021)

Syntactic Similarity

भारता च्या स्वातंत्र्य दिना निमित्त अमेरिके तील लॉस एन्जल्स शहरा त कार्यक्रम आयोजित करण्यात आला bhAratA cyA svAta.ntrya dinA nimitta amerike tIla IOsa enjalsa shaharA ta kAryakrama Ayojita karaNyAta AIA

भारत के स्वतंत्रता दिवस के अवसर पर अमरीका के लॉस एन्जल्स शहर में कार्यक्रम आयोजित किया गया bhArata ke svata.ntratA divasa ke avasara para amarlkA ke losa enjalsa shahara me.n kAryakrama Ayojita kiyA gayA

Syntactic Divergence D Makes it more difficult for the model to learn common representations

India ke Independence day ke occasion par america ke los angeles city me programme organize kiya gaya

On the occasion of India's Independence day, a programme was organized in American city of Los Angeles

Source reordering for SMT

(Kunchukuttan et al., 2014)

Change order of words in input sentence to match word order in the target language

Bahubali earned more than 1500 crore rupees at the boxoffice

Bahubali the boxoffice at 1500 crore rupees earned बाहुबली ने बॉक्सओफिस पर 1500 करोड रुपए कमाए

		Indo-Aryan					
	pan	hin	guj	ben	mar		
Baseline	15.83	21.98	15.80	12.95	10.59		
Generic	17.06	23.70	16.49	13.61	11.05		
Hindi-tuned	17.96	24.45	17.38	13.99	11.77		

A common set of rules can be written for all Indian languages

Rules from (Ramanathan et al. 2008, Patel et al. 2013) for Hindi.

https://github.com/anoopkunchukuttan/cfilt_preorder

Language Relatedness can be successfully utilized

between languages where contact relation exists

Experiment	BLEU
Baseline	12.91
+ Hindi as helper language	16.25

Tamil to English NMT with transfer-learning using Hindi

Pre-trained Models

Supervised data not sufficient

How do we understand linguistics similarities synonymy, parts-of-speech, word categories, analogies

How do we know if the sentence is grammatically correct?

How do we know if the sentence makes sense?

These capabilities are important for generalization

Automatic Feature Extraction Continuous Space Representation Numerical Optimization at disposal

Transfer Learning Better generalizability across languages

Pre-trained Models

Task-independent models that know about language

Word Embeddings

Encoder Language Model for NLU Decoder Language Model for NLG Encoder-decoder Language Model for NLU+NLG

H Multilinguality

MUSE

mBERT

mBART

Trained on a large amount of raw text corpora with unsupervised objectives

Language models are

- computationally intensive to train
- trained on a large amount of raw text corpora
- giant models

Only task-specific training: less data & less computation

Language understanding for tasks like sentiment analysis, question answering, paraphrase detection Language modeling & Language generation for tasks like summarization, ASR, question generation

Multi-linguality and Pre-training are complementary

Language-family specific pre-trained model

- Compact pre-trained models
- Utilize language relatedness
- Better data representation

Summary

- Deep Learning presents a unique opportunity to build NLP technologies at scale for Indian languages
- Utilizing language relatedness is important to this mission
- The orthographic similarity of Indian languages is a strong starting point for utilizing language relatedness.
- Contact as well as genetic relatedness are useful in the context of Indian languages.
- Multilingual pre-trained models trained on large corpora needed for transfer learning in NLU and NLG tasks.

Our Approach

IndicNLPSuite

Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages

Divyanshu Kakwani, Anoop Kunchukuttan, Satish Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M. Khapra, Pratyush Kumar

AI4Bharat, IITM, Microsoft, RBCDSAI,

EMNLP Findings 2020

IndicNLPSuite

Divyanshu Kakwani, Anoop Kunchukuttan, Satish Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M. Khapra, Pratyush Kumar. IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages. Findings of EMNLP. 2020.

IndicCorp

https://indicnlp.ai4bharat.org/corpora

Corpus Size in Millions of Tokens

11 Indic languages (+Indian English) 8.8B tokens **450M** sentences **57M** pages **General** domain 1000+ Sources

~6 months of crawl

9X increase, Largest Corpora

Models

Mined Datasets

IndicBERT IndicBART n-gram LM IndicWav2Vec MT Models

IndicCorp is a central resource

Parallel Translation Corpus Parallel Transliteration Corpus NER Corpus Text Classification Language Generation

Benchmark Datasets

Webcorpus https://github.com/AI4Bharat/webcorpus (a scalable web crawler) DB Distributed, Submit URL Sources Multi-threaded **Cloud Storage** Push/Retrieve Data **Push Crawled Data** Node 1 ... Node 2 Horizontally Scalable Node 3 Dashboard **Processors** Crawler

Processing HTML Pages to Get Sentences

https://github.com/AI4Bharat/webcorpus

Custom Extractors

Filters (language, length,script)
IndicGLUE (Indic General Language Understanding Evaluation Benchmark)

Task Type	Task	N	Languages
Classification	News Article Classification	10	bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Headline Classification	4	gu, ml, <u>mr</u> , ta
	Sentiment Analysis	2	hi, <u>te</u>
	Discourse Mode Classification	1	hi
Diagnostics	Winograd Natural Language Inference	3	gu, hi, <u>mr</u>
	Choice of Plausible Alternatives	3	gu, hi, <u>mr</u>
Semantic Similarity	Headline Prediction	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Wikipedia Section Titles	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Cloze-style Question Answering	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Paraphrase Detection	4	hi, ml, pa, ta
Sequence Labelling	Named Entity Recognition	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
Cross-lingual	Cross-Lingual Sentence Retrieval	8	bn, gu, hi, ml, <u>mr</u> , or, ta, <u>te</u>

IndicGLUE	New tasks		
Task Type	Task O	N	Languages
Classification	News Article Classification	10	bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Headline Classification	4	gu, ml, <u>mr</u> , ta
Difficult	Sentiment Analysis	2	hi, <u>te</u>
tasks	Discourse Mode Classification	1	hi
Diagnosties	Winograd Natural Language Inference	3	gu, hi, mr
•	Choice of Plausible Alternatives	3	gu, hi, mr
Semantic Similarity	Headline Prediction	11	as, bn, gu, hi, kn, mr, m, or, pa, ta, te
	Wikipedia Section Titles	11	as, bn, gu, hi, kn, ml, mr, or, pa, ta, <u>te</u>
	Cloze-style Question Answering	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
	Paraphrase Detection	4	hi, ml, pa, ta
Sequence Labelling	Named Entity Recognition	11	as, bn, gu, hi, <u>kn</u> , ml, <u>mr</u> , or, pa, ta, <u>te</u>
Cross-lingual	Cross-Lingual Sentence Retrieval	8	bn, gu, hi, ml, <u>mr</u> , or, ta, <u>te</u>

Creation of IndicGLUE

IndicGLUE Tasks

6 Tasks 4 Types

Semantic

News Articles Headline Prediction Wikipedia Section Title Prediction Article Genre Classification News Crawls Wikipedia News Crawls

KnowledgeCloze-style multiple-choice QA

Wikipedia

Syntax Named Entity Recognition

Public Dataset

Cross-lingual Cross-Lingual Sentence Retrieval Public Dataset

Additional Tasks (Paraphrase Detection, Movie Reviews etc.)

IndicGLUE: News Article Headline Prediction

Created From: News Crawls

IPL 2021: Australian Cricketers, Support Staff Expected To Head To Maldives

With their country shut for all those flying from India, the now-suspended IPL's Australian contingent, comprising players, support staff and commentators, is expected to head to Maldives before taking a connecting flight for home. The IPL was "indefinitely suspended" on Tuesday after multiple cases of COVID-19 emerged from Kolkata Knight Riders, Delhi Capitals, SunRisers Hyderabad and Chennai Super Kings. There are 14 <u>Australian</u> players along with coaches and commentators who might now take a detour as the Australian government has imposed strict sanctions for people returning from India.

Careful Negative Sampling

SRH vs MI, IPL 2021: SunRisers -Ve Hyderabad Players To Watch Out For

Bottom-placed SunRisers Hyderabad take on a high-flying Mumbai Indians team at the Arun Jaitley Stadium in Delhi on Tuesday. SunRisers Hyderabad have had a torrid time in IPL 2021 so far, winning a solitary game after playing seven matches. They have just two Task: Predict the correct headline

IPL 2021: Mayank Agarwal's 99* In Vain As Delhi Capitals Thrash Punjab Kings To Go Top Of The Table

Shikhar Dhawan's delightful 69 dwarfed Mayank Agarwal's unbeaten 99 as Delhi Capitals defeated Punjab Kings by seven wickets in the IPL, on Sunday to go atop the points table. Agarwal, leading the side in the absence of regular skipper K L Rahul, used the straight bat effectively in his lone hand to take Punjab Kings to 166 for six. Delhi Capitals hardly broke a sweat in the run chase, cantering to victory in 17.4 overs overs, their sixth win in eight matches.

Input

77

Sri Lanka All-Rounder Thisara Perera Bids Adieu To International Cricket

Sri Lankan all-rounder Thisara Perera, on Monday, announced his retirement from international cricket with immediate effect. In a letter to Sri Lanka Cricket (SLC), Perera said that he wanted to focus on his family, before adding that it was the right time for him

IndicGLUE: Cloze-style multiple-choice QA

Created From: Wikipedia

Task: Predict the masked entity

Homi Bhabha was born in 1949 in Mumbai to a Parsi family. After receiving his early education at St. Mary's, he went on to graduate from Bombay University . He then moved to [MASK] for higher education . He received his MA and M.Phil degrees from Oxford University .

Candidate 1: Britain [correct answer] Candidate 2: India Candidate 3: Chicago Candidate 4: Pakistan

IndicGLUE: Article Genre Classification

Created From: News Crawl

Task: Predict the genre of news article

IPL 2021: Mayank Agarwal's 99* In Vain As Delhi Capitals Thrash Punjab Kings To Go Top Of The Table

Shikhar Dhawan's delightful 69 dwarfed Mayank Agarwal's unbeaten 99 as Delhi Capitals defeated Punjab Kings by seven wickets in the IPL, on Sunday to go atop the points table. Agarwal, leading the side in the absence of regular skipper K L Rahul, used the straight bat effectively in his lone hand to take Punjab Kings to 166 for six. Delhi Capitals hardly broke a sweat in the run chase, cantering to victory in 17.4 overs overs, their sixth win in eight matches.

=> Mined from URL

IndicFT <u>https://indicnlp.ai4bharat.org/indicft</u>

- Pre-trained word embeddings trained with FastText.
- 300 dimension vectors, suitable for morphologically rich languages.
- Outperforms embeddings from the FastText project on word analogy, similarity and classification tasks.

Lang	FT-W	FT-WC	IndicFT	Lang	Dataset	FT-W	FT-WC	IndicFT
Word Si	nilarity ()	Pearson Co	rrelation)	hi	BBC Articles	72.29	67.44	77.02
na	0.467	0 384	0 445		IITP+ Movie	41.61	44.52	45.81
hi	0.575	0.551	0.598		IITP Product	58.32	57.17	61.57
gu	0.507	0.521	0.600	bn	Soham Articles	62.79	64.78	71.82
mr	0.497	0.544	0.509	911		81 94	84 07	90.74
te	0.559	0.543	0.578	ml	INLTK	86 35	83 65	95.87
ta	0.439	0.438	0.422	mr	Headlines	83.06	81.65	91.40
Average	0.507	0.497	0.525	ta		90.88	89.09	95.37
Average	0.507	0.477	0.525	te	ACTSA	46.03	42.51	52.58
Word An	alogy (%	accuracy)		-	A	(0.25	(0.22	75.00
hi	19.76	32.93	29.65	<u>.</u>	Average	09.25	68.32	/5.80

FT-W: pre-trained FastText (Wikipedia). FT-WC: pre-trained FastText (Wikipedia+CommonCrawl)

IndicBERT

https://indicnlp.ai4bharat.org/indic-bert

https://huggingface.co/ai4bharat/indic-bert

- Pre-trained Indic LM for NLU applications
- Large Indian language content (8B tokens)
 - 11 Indian languages
 - + Indian English content
- Multilingual Model
- Compact Model (~20m params)
- Competitive/better than mBERT/XLM-R
- Simplify fine-tune for your application
- 10k downloads per month on HuggingFace

IndicBART

https://indicnlp.ai4bharat.org/indic-bart

- Pre-trained Indic S2S for NLG applications
- Large Indian language content (8B tokens)
 - 11 Indian languages
 - + Indian English content
- Multilingual Model
- Compact Model (~224m params)
- Single Script
- Competitive with mBART50 for MT and summarization
- Simply fine-tune for your application

Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan, Ratish Puduppully, Mitesh M. Khapra, Pratyush Kumar. IndicBART: A Pre-trained Model for Natural Language Generation of Indic Languages. Arxiv preprint 2109.02903. 2021.

Future Possibilities

Monolingual Data

- Language coverage
- Larger Monolingual Crawls
- Release more metadata
- Offensive Text Filtering

Pre-trained models

- Language coverage
- Train on larger data
- Incorporate parallel data
- Model distillation recipes

Benchmark datasets

- Diverse & challenging tasks
- Language coverage
- Zeroshot evaluation
- NLG datasets

Samanantar

The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth Bheemaraj, Mayank Jobanputra, Raghavan AK, Ajitesh Sharma, Sujit Sahoo, Harshita Diddee, Mahalakshmi J, Divyanshu Kakwani, Navneet Kumar, Aswin Pradeep, Srihari Nagaraj, Kumar Deepak, Vivek Raghavan, Anoop Kunchukuttan, Pratyush Kumar, Mitesh Shantadevi Khapra

AI4Bharat, EkStep, IITM, Microsoft, RBCDSAI, Tarento

TACL 2022

11 Languages + English

- Assamese, Bengali, Hindi, Gujarati, Marathi, Odia, Punjabi
- Kannada, Malayalam, Telugu, Hindi

	#lang-pair	#sent-pair (million)
English-Indic languages	11	49.7
Indic-Indic languages	55	83.4

4x increase over existing corpora

Sentence pair similarity scores available

Source	en-as	en-bn	en-gu	en-hi	en-kn	en-ml	en-mr	en-or	en-pa	en-ta	en-te	Total
Existing Sources	108	3,496	611	2,818	472	1,237	758	229	631	1,456	593	12,408
New Sources	34	5,109	2,457	7,308	3,622	4,687	2,869	769	2,349	3,809	4,353	37,366
Total	141	8,605	3,068	10,126	4,094	5,924	3,627	998	2,980	5,265	4,946	49,774
Increase Factor	1.3	2.5	5	3.6	8.7	4.8	4.8	4.4	4.7	3.6	8.3	4

#sentences (in millions)

https://indicnlp.ai4bharat.org/samanantar

Mining from monolingual corpora is the largest contributor to Samanantar

Compiling all the existing sources

https://github.com/AI4Bharat/indicnlp_catalog#ParallelTranslationCorpus

- 1. All the sources from **OPUS** were selected as of 21st March 2021 (13 Sources)
 - a. ELRC_2922, GNOME, KDE, Ubuntu, Global Voices, JW300, Mozilla-I10n, Open subtitles, TED 2020, Tanzil, Tatoeba, Bible-eudin, Wiki-Matrix
- 2. All the recent releases of shared tasks, papers, and open sources data (14 Sources)
 - a. ALT, BanglaNMT, CVIT-PIB, IITB, MTEnglish2Odia, NLPC, OdiEnCorp 2.0, PMIndia V1, SIPC, TICO19, UFAL, URST, WMT-2019-wiki24, WMT-2019-govin
- 3. Total of 12.4M sentences from English to 11 Indian Languages

There's no public model available trained on all the existing parallel data

*cited at the end

Existing sources of parallel data

	en-as	en-bn	en-gu	en-hi	en-kn	en-ml	en-mr	en-or	en-pa	en-ta	en-te	Total
JW300	46	269	305	510	316	371	289	-	374	718	203	3400
banglanmt	-	2380	-	-	-	-		-	-	-	-	2380
iitb	-		1	1603			-		-	-	-	1603
cvit-pib	-	92	58	267	-	43	114	94	101	116	45	930
wikimatrix ⁶	-	281	-	231		72	124	-	-	95	92	895
OpenSubtitles	-	372	-	81	-	357		-	-	28	23	862
Tanzil	-	185	-	185		185				92	-	647
KDE4	6	35	31	85	13	39	12	8	78	79	14	402
PMIndia V1	7	23	42	50	29	27	29	32	28	33	33	333
GNOME	29	40	38	30	24	23	26	21	33	31	37	332
bible-uedin	-		16	62	61	61	60	-	-	-	62	321
Ubuntu	21	28	27	25	22	22	26	20	29	25	24	269
ufal	-	-	-	-	-	-		-		167	-	167
sipc	-	21	-	38		30				35	43	166
GlobalVoices	-	138	-	2				326	1	-	-	142
TED2020	< 1	10	16	46	2	6	22	-	752	11	5	120
Mozilla-I10n	7	21	-	< 1	12	13	15	8		17	25	119
odiencorp 2.0	-	-	-	-		-	-	91	-	-	-	91
Tatoeba	< 1	5	< 1	11	< 1	< 1	53	<1	<1	< 1	< 1	71
urst	-		65	-	-	-		-	-	-	-	65
alt	-	20	-	20	-	-		-	-	-	-	40
mtenglish2odia	-	-	-	-	-		-	35	-	-	-	35
nlpc	-		-	-						31		31
wmt-2019-wiki	-	2	18	-	-	-	-	-	-	-	-	18
wmt2019-govin	-	-	11	-	-	-	-	-	-	-	-	11
tico19		< 1	< 1	< 1	< 1	< 1	< 1	-	< 1	< 1	< 1	6
ELRC_2922	-	< 1	-	< 1	-	< 1	-	-	-	< 1	< 1	1
Total	108	3496	611	2818	472	1237	758	229	631	1456	593	12408

Mining from Machine Readable Sources

- 1. Identified 12 websites which publish content in multiple Indian languages
 - a. DriveSpark, OneIndia, NativePlanet, MyKhel, Newsonair, DW, TimesofIndia, IndianExpress, GoodReturns, CatchNews, DD National

- 2. Identified 2 Educational sources
 - a. NPTEL, Khan Academy

MATCH: • HYD VS DEL - IN PLAY • CHE VS BAN - COMPLETED • PAK VS ZIM - COMPLETED • BAN VS SRL - COMPLETED • ZIM VS PAK - UPCOMING • + MORE

Home » Cricket » News » IPL 2021: RCB vs CSK: Highlights: Ravindra Jadeja show helps CSK maul RCB by 69 runs, climb at top

IPL 2021: RCB vs CSK: Highlights: Ravindra Jadeja show helps CSK maul RCB by 69 runs, climb at top

By Avinash Sharma

Updated: Sunday, April 25, 2021, 19:44 [IST]

మ్యావ: • DEL VS HYD - IN PLAY • CHE VS BAN - పూర్తయింది • PAK VS ZIM - పూర్తయింది • BAN VS SRL - పూర్తయింది • ZIM VS PAK - రాబోయే • + మరి

హామ్ » క్రికెట్ » వార్తలు » CSK vs RCB: బ్యాట్, బంతితో 'సర్' జడజా ఆల్రొండ్ షో.. బెంటిలెత్తిన బెంగళూరు! కోహ్లాసనకు తొలి ఓటమి!

CSK vs RCB: బ్యాట్, బంతితో 'సర్' జడేజా ఆల్రౌండ్ షో.. బెంబేలెత్తిన

బెంగళూరు! కోహ్లీసేనకు తొలి ఓటమి!

By Sampath Kumar

Updated: Sunday, April 25, 2021, 19:53 [IST]

Pipeline from Extraction to Alignment

- 1. <u>https://youtube-dl.org</u>
- 2. https://www.crummy.com/software/BeautifulSoup
- 3. https://pypi.org/project/selenium
- 4. https://pypi.org/project/indic-nlp-library/

Alignment with LaBSE

- 1. Language agnostic BERT Sentence Embedding
- 2. LaBSE is a multilingual model trained on 17B monolingual sentences and 6B parallel sentences using the MLM (Masked Language Modelling), TLM (Translation Language Modelling) and margin-based task
- 3. Translation Ranking Task
- 4. LaBSE provides high-dimensional vector(768) for a given input sentence
- 5. We use cosine similarity as the similarity metric
- 6. Select the sentence with the maximum similarity

https://tfhub.dev/google/LaBSE/2

Post Processing

- 1. Select only sentences with LaBSE alignment score greater than 0.75
- 2. The LaBSE Alignment Score (LAS) threshold of 0.75 has been chosen based on manual verification of the sentences
- 3. More about the threshold in Analysis section
- 4. Dedup the sentence pairs
- 5. Drop sentences with less than 4 words
- 6. Drop sentences if language identified as anything other than intended language [polyglot]

https://github.com/aboSamoor/polyglot

Mining from Non-Machine Readable Sources

- 1. Documents published from parliament proceedings
- 2. Speeches from AP and TS Legislative Assemblies
- 3. Speeches from Bangladesh Parliament

- 1. https://cloud.google.com/vision/docs/ocr
- 2. https://pypi.org/project/indic-nlp-library/

- அடுத்த 7 வருடங்களில், உலகளவில் உயர் வருமானத்தைக் கொண்ட நாடுகளுக்கு நிகராக, தனிநபர் வருமானத்தில் 3 மடங்கு வளர்ச்சியினை அடைந்து,
 2023 ஆம் ஆண்டிற்குள் இந்தியாவின் பொருளாதாரத்தில் வளமிக்க மாநிலங்களில் ஒன்றாக தமிழ்நாடு இருக்கும்.
- தமிழ்நாடு அனைவரையும் உள்ளடக்கிய வளர்ச்சி முறையை வெளிப்படுத்தும் இலாபகரமான மற்றும் பயனுள்ள வேலைகளைக் தேடும் அனைவருக்கும், வாய்ப்புகளை வழங்கி, வறுமையில்லா மாநிலமாக தமிழ்நாடு திகழ்ந்து, பாதிக்கப்பட்டவர்கள், நலிவுற்ற பிரிவினர் மற்றும் ஆதரவற்றோர்களுக்கு பராமரிப்பு அளிக்கும்.
- சமுதாய மேம்பாட்டில் தமிழ்நாடு முன்னிலை மாநிலமாக விளங்கி, இந்தியாவில்
 உள்ள அனைத்து மாநிலங்களிடையே மனித மேம்பாட்டு குறியீட்டில் உயரிய இடத்தைப் பெறும்.
- தமிழ்நாடு, பல்வேறு துறைகளில் உலகத்தரம் வாய்ந்த நிறுவனங்கள் மற்றும் உயர் மனித திறமையின் மூலம் புதுமை மையமாகவும் அறிவாற்றலில் இந்தியாவின் தலைநகரமாகவும் விளங்கும்.
- தமிழ்நாடு, அதனுடைய சூழலியல் மற்றும் அதனுடைய பாரம்பரியத்தை என்றென்றும் பாதுகாக்கும்.

- Tamil Nadu will be amongst India's most economically prosperous states by 2023, achieving a three-fold growth in per capita income (in real terms) over the next 7 years to be on par with the Upper Middle Income countries globally.
- Tamil Nadu will exhibit a highly inclusive growth pattern it will largely be a poverty free state with opportunities for gainful and productive employment for all those who seek it, and will provide care for the disadvantaged, vulnerable and the destitute in the state.
- Tamil Nadu will be India's leading state in social development and will have the highest Human Development Index (HDI) amongst all Indian States.
- Tamil Nadu will be known as the innovation hub and knowledge capital of India, on the strength of world class institutions in various fields and the best human talent.
- Tamil Nadu will preserve and care for its ecology and heritage.

2

STATE YOUTH POLICY

2

• About 65% of the persons targeted for skill development, who would have studied upto secondary school, would be provided with training on basic

skills for a variety of livelihoods. About 33% would have already undergone formal education as part of vocational training programmes or in colleges, while the remaining top 2% would be top echelon professionals.

Going beyond comparable corpora

- Discovering parallel sources is non-trivial
- Not necessarily Regular URL patterns across websites
- Parallel content can exist across different domains
- Sometimes, it is difficult to say that the websites are parallel

Audacious goal: can we mine parallel data from just large monolingual corpora

Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand Joulin. CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB. 2019. arXiv:1911.04944

🏯 లాగిన్ అయిలేరు ఈ IP కి సంబంధించిన చర్చ మార్చుచేర్పులు ఖాతా సృష్టించుకోండి లాగినవండి వికీపీడియాలో వెతకండి

వ్యాసం చర్చ

ಮహాత్మా గాంధీ

విషయ సూచిక [దాచు]

7.1 తనమీద హత్యాప్రయత్నం చేసినవారి గురించి గాంధీ

3 బారతదేశములో పోరాటము ఆరంభ దశ

వికీపీడియా నుండి

పజలు గురించారు.

1 బాల్యము, విద్య 2 దక్షిణ ఆఫికా పవాసము

7 చివరి రోజులు

8 మరణం

4 విజయవాడ పర్యటన

5 పతాకస్తాయి పోరాటము

8.1 గాందీ హత్య

9.2 టాల్ సాయ్

9.3 సతాగ్రాహం

9.5 అంటరానితనం

11.1 అవార్డులు, బిరుదులు

9.4 అహింస

10 చితమాలిక

11 ప్రసిద్ధత

9 බలువలు,పదతులు

9.1 స్కూరి

6 స్వాతంత్ర్య సాధన, దేశ విభజన

8.2 గాంద్ గురించి గాడే

మొదటి పేజీ యాదృచ్చిక పేజీ రచుబండ ລຣີ້ລືດແກະ ຄ່າຄິດອ సంపదింపు పేజీ విరాళాలు

పరస్పరక్షియ సహాయసూచిక సముదాయ పందిరి ఇటీవలి మార్పులు

దస్తం ఎక్కింపు పరికరాల పెట ఇక్కడికి లింకున్న పేజీలు

సంబంధిత మార్పులు పతేగ్రక పేజీలు శాశ్వత లింకు పేజీ సమాచారం ఈ పేజీని ఉలేఖించండి ఎకీడేటా అంశం ముదణ/ఎగుమతి

ఓ పుస్తకాన్ని సృష్టించండి PDF రూపంలో దించుకోండి అచ్చుతీయదగ్గ కూర్పు ఇతర ప్రాజెక్టులలో

Wikimedia Commons Wikiquote Wikisource

ఇతర బాషలు

"తెలుగులో సులువుగా టైపు చేసేందుకు, మీ కోమ్ బౌజరు లో గూగుల్ లిప్వంతరీకరణ పద్ధతిని వాడవచ్చు."

మోహన్ దాస్ కరంచంద్ గాంధీ (అక్టోబరు 2, 1869 - జనవరి 30, 1948) ఆంగ్రేయుల పాలననుండి భారతదేశానికి సాతంత్వము సాధించిన నాయకులలో అగగణ్యుడు.

ప్రజలు అతన్ని మహాత్ముడని, జాతిపిత అని గౌరవిస్తారు. సత్వము, అహింసలు గాంధీ నమ్మే సిద్దాంత మూలాలు. సహాయ నిరాకరణ, సత్యాగ్రహము అతని ఆయుధాలు.

కొల్లాయి కట్టి, చేత కర్రబట్టి, నూలు వడకి, మురికివాడలు శుభం చేసి అన్ని మతాలూ, కులాలూ ఒకటే అని చాటాడు.

[ఈ నోటీసును తొలగించు]

Fnhttps://en.wikipedia.org/wi ki/Mahatma Gandhi

Te https://te.wikipedia.org/wik <u>i/మహాతాు గాందీ</u>

Solution Solution Create account Log in

Search Wikipedia Read View source View history

Q **()**

Mahatma Gandhi

చదువు సోర్పుచూడు చరిత్ర

From Wikipedia, the free encyclopedia

"Gandhi" redirects here. For other uses, see Gandhi (disambiguation).

political ethicist,^[6] who employed nonviolent resistance to lead the successful campaign for India's independence from British rule,^[6] and in turn inspired movements for civil rights and freedom across the world. The honorific Mahātmā (Sanskrit: "great-souled", "venerable"), first applied to him in 1914 in South Africa, is now used throughout the world.^{[7][8]}

Studio photograph of Gandhi, 1931 Born Mohandas Karamchand Gandhi 2 October 1869 Porbandar, Kathiawar Agency, British Raj Died 30 January 1948 (aged 78) New Delhi, India Cause of Assassination death Monuments Raj Ghat, Gandhi Smriti

Born and raised in a Hindu family in coastal Gujarat, western India, Gandhi trained in law at the Inner Temple, London, and was called to the bar at age 22 in June 1891. After two uncertain years in India, where he was unable to start a successful law practice, he moved to South Africa in 1893, to represent an Indian merchant in a lawsuit. He went on to live in South Africa for 21 years. It was in South Africa that Gandhi raised a family, and first employed nonviolent resistance in a campaign for civil rights. In 1915, aged 45, he returned to India. He set about organising peasants, farmers, and urban labourers to protest against excessive land-tax and discrimination. Assuming leadership of the Indian National Congress in 1921, Gandhi led nationwide campaigns for easing poverty, expanding women's rights, building religious and ethnic amity, ending untouchability, and above all for achieving Swarai or self-rule.[9]

The same year Gandhi adopted the Indian loincloth, or short dhoti and, in the winter, a shawl, both woven with yarn hand-spun on a traditional Indian spinning wheel, or charkha, as a mark of identification with India's rural poor. Thereafter, he lived modestly in a self-sufficient residential community. ate simple vegetarian food, and undertook long fasts as a means of self-purification and political protest. Bringing anti-colonial nationalism to the common Indians, Gandhi led them in challenging the British-imposed salt tax with the 400 km (250 mi) Dandi Salt March in 1930, and later in calling for the British to Quit India in 1942. He was imprisoned for many years, upon many occasions, in both South Africa and India.

Gandhi's vision of an independent India based on religious pluralism was challenged in the early 1940s by a new Muslim nationalism which was demanding a separate Muslim homeland carved out of India.^[10] In August 1947, Britain granted independence, but the British Indian Empire^[10] was partitioned into two dominions, a Hindu-majority India and Muslim-majority Pakistan.[11] As many displaced Hindus, Muslims, and Sikhs made their way to their new lands, religious violence broke out, especially in the Punjab and Bengal. Eschewing the official celebration of independence in Delhi, Gandhi visited the affected areas, attempting to provide solace. In the months following, he undertook several fasts unto death to stop religious violence. The last of these, undertaken on 12 January 1948 when he was 78,[12] also had the indirect goal of pressuring India to pay out some cash assets owed to Pakistan.^[12] Some Indians thought Gandhi was too accommodating.^{[12][13]} Among them was Nathuram Godse, a Hindu nationalist, who assassinated Gandhi on 30 January 1948 by firing three bullets into his chest [13]

20వ శతాభిలోని రాజకీయనాయకులలో అత్వధికముగా మానవాళిని ప్రభావితము చేసిన రాజకీయ నాయకునిగా అతన్ని కేబుల్ న్యూస్ నెట్రర్మ్ (CNN) జరిపిన సరే(లో

Article Talk

M WIKIPEDIA The Free Encyclopedia

Ω

Main page

Contents

Contact us

Contribute

Learn to edit

Upload file

Tools

Community portal

Recent changes

What links here

Related changes

Special pages

Permanent link

Page information

Cite this page

Wikidata item

Print/export

Download as PDF

Printable version

In other projects

Wikimedia Commons

Donate

Help

Current events

Random article

About Wikipedia

Mohandas Karamchand Gandhi (/gg:ndi, 'geendi/:^[2] 2 October 1869 - 30 January 1948) was an Indian lawyer.^[3] anti-colonial nationalist.^[4] and

Q

Mining from Monolingual Corpora

Johnson, J., Douze, M., & Jégou, H. (2017). Billion-scale similarity search with GPUs. *ArXiv, abs/1702.08734*.

What helps scaling to large datasets

- Simple similarity metric (cosine similarity)
 - Distance from binary argument functions can't scale (e.g. COMET score)
- Approximate nearest-neighbourhood search
- Compressed indexes to fit indices in GPU memory
- Distributing indices over multiple GPUs
- Searching over multiple indices (to speed up searches)

Recomputing the Cosine Similarity

- 1. Variance on cosine similarity computed on the low-dimension vectors
- Recompute the cosine similarity on the high-dimensional vector for the top-1 FAISS match
- 3. Here we use a higher LAS of 0.8

Qualitative Analysis of the parallel corpus

10000 samples manually evaluated using 30+ annotators across 11 languages Using SemEval-1 guidelines for cross-lingual semantic textual similarity Available for **cross-lingual STS** studies (<u>https://storage.googleapis.com/samanantar-public/human_annotations.tsv</u>)

1. Sentence pairs included in *Samanantar* have high semantic textual similarity (STS)

- a. avg: 4.17, min: 3.83, max: 4.82 (out of 5)
- 2. Quality depends on resource size
 - a. Highest: hi, bn
 - b. Lowest : as, or

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, and Janyce Wiebe. 2016. SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. SemEva.

Task Instructions

Instruction	Score	Sample sentence pairs
Sentences are completely dissimilar	0	He is a strokemaker. இவர் ஒரு செயின் ஸ்மோக்கர் (he is a chain smoker)
Sentences are dissimilar but topically related	1	Can we save our lakes from global warming? ठंडे पानी के कोरल जलवायु परिवर्तन से बच पायेंगे? (Will cold water corals survive climate change?)
Sentences are dissimilar but agree on some details	2	Going smoke-free புகையில்லா போகி (smoke free Boghi festival)
Sentences have differences in important details	3	The province is divided into ten districts. இந்த மாவட்டத்தை ஆறு மண்டலங்களாகப் பிரித்துள்ளனர். (The province is divided into 6 districts.)
Differences in details are not important	4	Maruti Suzuki To Add More CNG Models, Hybrids मारूति सुजुकी सीएनजी मॉडलों में करेगी इजाफा (Maruti Suzuki to increase CNG models)
Complete semantic similarity	5	They can't come out from their houses. वे घर से निकल नहीं पाते. (They can't get out of their homes)

SemEval-2016 Task 1 Cross-lingual STS annotation guidelines

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, and Janyce Wiebe. 2016. SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. SemEval.

Mining between Indic Languages

Mine Indic-Indic parallel corpora from English to Indic corpora

83.7 million sentence pairs for 55 language pairs

Markus Freitag and Orhan Firat. 2020. Complete multilingual neural machine translation.WMT. Annette Rios, Mathias Müller, and Rico Sennrich. 2020. Subword segmentation and a single bridge language affect zero-shot neural machine translation. WMT

IndicTrans

https://indicnlp.ai4bharat.org/indic-trans

- Trained on Samanantar parallel corpus
- Multilingual Model (en \rightarrow IL, IL \rightarrow en, IL \rightarrow IL)
- Single Script
- Model size: (~430m params)
- Best open-source model
- Deployed in the Supreme Court of India & Bangladesh
- Training/fine-tuning/inference scripts available

Gowtham Ramesh, Sumanth Doddapaneni, Aravinth Bheemaraj, Mayank Jobanputra, Vivek Raghavan, Anoop Kunchukuttan, Pratyush Kumar, Mitesh Khapra & others. Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages. TACL. 2022.

Key Results

- Compilation of existing resources was a fruitful exercise.
- IndicTrans trained on Samanantar outperforms all publicly available open source models.
- IndicTrans trained on Samanantar is competitive with commercial systems.
- Pre-training needs further investigation. formance gains are higher for low resource languages.
| | x-en | | | | | | en-x | | | | | | | | | | | |
|---------|------|------|------|------|-------|------|------|-------------|------|------|------|------|------|-------|------|------|-------------|------|
| Model | GOOG | MSFT | CVIT | OPUS | mBART | TF | mT5 | IT | Δ | GOOG | MSFT | CVIT | OPUS | mBART | TF | mT5 | IT | Δ |
| WAT2021 | | | | | | | | | | | | | | | | | | |
| bn | 20.6 | 21.8 | - | 11.4 | 4.7 | 24.2 | 24.8 | <u>29.6</u> | 4.8 | 7.3 | 11.4 | 12.2 | - | 0.5 | 13.3 | 13.6 | 15.3 | 1.7 |
| gu | 32.9 | 34.5 | - | - | 6.0 | 33.1 | 34.6 | 40.3 | 5.7 | 16.1 | 22.4 | 22.4 | - | 0.7 | 21.9 | 24.8 | 25.6 | 0.8 |
| hi | 36.7 | 38.0 | - | 13.3 | 33.1 | 38.8 | 39.2 | 43.9 | 4.7 | 32.8 | 34.3 | 34.3 | 11.4 | 27.7 | 35.9 | 36.0 | 38.6 | 2.6 |
| kn | 24.6 | 23.4 | - | - | - | 23.5 | 27.8 | 36.4 | 8.6 | 12.9 | 16.1 | - | - | - | 12.1 | 17.3 | 19.1 | 1.8 |
| ml | 27.2 | 27.4 | - | 5.7 | 19.1 | 26.3 | 26.8 | 34.6 | 7.3 | 10.6 | 7.6 | 11.4 | 1.5 | 1.6 | 11.2 | 7.2 | 14.7 | 3.3 |
| mr | 26.1 | 27.7 | - | 0.4 | 11.7 | 26.7 | 27.6 | 33.5 | 5.9 | 12.6 | 15.7 | 16.5 | 0.1 | 1.1 | 16.3 | 17.7 | 20.1 | 2.4 |
| or | 23.7 | 27.4 | - | - | - | 23.7 | - | 34.4 | 7.0 | 10.4 | 14.6 | 16.3 | - | - | 14.8 | - | 18.9 | 2.6 |
| pa | 35.9 | 35.9 | - | 8.6 | - | 36.0 | 37.1 | 43.2 | 6.1 | 22 | 28.1 | - | - | - | 29.8 | 31. | 33.1 | 2.1 |
| ta | 23.5 | 24.8 | - | - | 26.8 | 28.4 | 27.8 | 33.2 | 4.8 | 9.0 | 11.8 | 11.6 | - | 11.1 | 12.5 | 13.2 | 13.5 | 0.3 |
| te | 25.9 | 25.4 | - | - | 4.3 | 26.8 | 28.5 | <u>36.2</u> | 7.7 | 7.6 | 8.5 | 8.0 | - | 0.6 | 12.4 | 7.5 | <u>14.1</u> | 1.7 |
| WAT2020 | | | | | | | | | | | | | | | | | | |
| bn | 17.0 | 17.2 | 18.1 | 9.0 | 6.2 | 16.3 | 16.4 | 20.0 | 1.9 | 6.6 | 8.3 | 8.5 | - | 0.9 | 8.7 | 9.3 | 11.4 | 2.1 |
| gu | 21.0 | 22.0 | 23.4 | - | 3.0 | 16.6 | 18.9 | 24.1 | 0.7 | 10.8 | 12.8 | 12.4 | - | 0.5 | 9.7 | 11.8 | 15.3 | 2.5 |
| hi | 22.6 | 21.3 | 23.0 | 8.6 | 19.0 | 21.7 | 21.5 | 23.6 | 0.6 | 16.1 | 15.6 | 16.0 | 6.7 | 13.4 | 17.4 | 17.3 | 20.0 | 2.6 |
| ml | 17.3 | 16.5 | 18.9 | 5.8 | 13.5 | 14.4 | 15.4 | 20.4 | 1.5 | 5.6 | 5.5 | 5.3 | 1.1 | 1.5 | 5.2 | 3.6 | 7.2 | 1.6 |
| mr | 18.1 | 18.6 | 19.5 | 0.5 | 9.2 | 15.3 | 16.8 | <u>20.4</u> | 0.9 | 8.7 | 10.1 | 9.6 | 0.2 | 1.0 | 9.8 | 10.9 | 12.7 | 1.8 |
| ta | 14.6 | 15.4 | 17.1 | - | 16.1 | 15.3 | 14.9 | 18.3 | 1.3 | 4.5 | 5.4 | 4.6 | - | 5.5 | 5.0 | 5.2 | 6.2 | 0.7 |
| te | 15.6 | 15.1 | 13.7 | - | 5.1 | 12.1 | 14.2 | <u>18.5</u> | 2.9 | 5.5 | 7.0 | 5.6 | - | 1.1 | 5.0 | 5.4 | 7.6 | 0.7 |
| WMT | | | | | | | | | | | | | | | | | | |
| hi | 31.3 | 30.1 | 24.6 | 13.1 | 25.7 | 25.3 | 26.0 | 29.7 | -1.6 | 24.6 | 24.2 | 20.2 | 7.9 | 18.3 | 23. | 23.8 | 25.5 | 0.9 |
| gu | 30.4 | 29.9 | 24.2 | - | 5.6 | 16.8 | 21.9 | 25.1 | -5.4 | 15.2 | 17.5 | 12.6 | - | 0.5 | 9.0 | 12.3 | 17.2 | -0.3 |
| ta | 27.5 | 27.4 | 17.1 | - | 20.7 | 16.6 | 17.5 | 24.1 | -3.4 | 9.6 | 10.0 | 4.8 | - | 6.3 | 5.8 | 7.1 | 9.9 | -0.1 |
| | | | | | | | | U | FAL | | | | | | | | | |
| ta | 25.1 | 25.5 | 19.9 | - | 24.7 | 26.3 | 25.6 | 30.2 | 3.9 | 7.7 | 10.1 | 7.2 | - | 9.2 | 11.3 | 11.9 | 10.9 | -1.0 |
| | | | | | | | | P | MI | | | | | | | | | |
| as | - | 16.7 | - | - | - | 7.4 | - | 29.9 | 13.2 | - | 10.8 | - | - | - | 3.5 | - | 11.6 | 0.8 |

	x-en								en-x						
Model	GOOG	MSFT	CVIT	OPUS	mBART	IT [†]	IT	GOOG	MSFT	CVIT	OPUS	mBART	IT [†]	IT	
as	-	24.9	-	-	-	17.1	23.3	-	13.6	-	-	-	7.0	6.9	
bn	34.6	31.2	-	17.9	9.4	30.1	32.2	28.1	22.9	7.9	-	1.4	18.2	20.3	
gu	40.2	35.4	-	-	4.8	30.6	34.3	25.6	27.7	14.1	-	0.7	19.4	22.6	
hi	44.2	36.9	-	18.6	32.6	34.3	37.9	<u>38.7</u>	31.8	25.7	13.7	22.2	32.2	34.5	
kn	32.2	30.5	-	-	-	19.5	28.8	<u>32.6</u>	22.0	-	-	-	9.9	18.9	
ml	34.6	34.1	-	9.5	24.0	26.5	31.7	27.4	21.1	6.6	4.4	3.0	10.9	16.3	
mr	36.1	32.7	-	0.6	14.8	27.1	30.8	<u>19.8</u>	18.3	8.5	0.1	1.2	12.7	16.1	
or	31.7	31.0	-	-	-	26.1	30.1	24.4	20.9	7.9	-	-	11.0	13.9	
pa	39.0	35.1	-	9.9	-	30.3	35.8	27.0	28.5	-	-	-	21.3	26.9	
ta	31.9	29.8	-	-	22.3	24.2	28.6	28.0	20.0	7.9	-	8.7	10.2	16.3	
te	38.8	37.3	-	-	15.5	29.0	33.5	30.6	30.5	8.2	-	4.5	17.7	22.0	

Table 7: BLEU scores for En-X and X-En translation for FLORES devtest Benchmark. IT[†] is IndicTrans trained only on existing data. We bold the best public model and underline the overall best model.

Future Possibilities

Training Data

- Language Coverage
- Use larger monolingual corpora
- Mine longer sentences
- Filtering strategies
 - COMET, PRISM, etc.

Benchmark data

- Create benchmark testsets
 - Source-original
 - Multi-domain
- Create human judgment pool for studying evaluation metrics

Model

- Language Coverage
- Romanized/code-mixed input
- Compact/distilled models
- Better multilingual transfer

IndicWav2Vec

Towards Building ASR Systems for the Next Billion Users

Tahir Javed, Sumanth Doddapaneni, Abhigyan Raman, Kaushal Santosh Bhogale, Gowtham Ramesh, AnoopKunchukuttan, Pratyush Kumar, Mitesh M. Khapra

AI4Bharat, IITM, Microsoft, RBCDSAI,

AAAI 2022

Raw Speech Corpora

- ~17,000 hrs
- 40 languages
 - All 22 languages in the 8th Schedule
 - Balanced across languages
- 4 language families
- Speaker/channel diversity
- No background noise
- Predominantly target language

https://indicnlp.ai4bharat.org/indicwav2vec/

Sources: Youtube, NewsOnAir

youtube: Content licensed under CC-BY

YouTube Data Extraction

Audio Data Pre-processing

Unsupervised Pre-training

- Follows Wav2Vec 2.0 architecture
- Inspired by **BERT** pre-training in NLP
- Quantization to learn discrete targets for semi-supervised learning
- Masking + contrastive loss
- Temperature sampling to address data imbalance
- Initialize with English wav2vec 2.0
- Model variants:
 - BASE (95m)
 - LARGE (317m)

Finetuning

- Add Linear Projection head
- CTC Loss
- SpecAugment for data augmentation
- Finetune all params except feature encoder

Decoding

LM: 6-gram trained on IndicCorp Lexicon-based beam search decoder (Flashlight)

 $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} \log p_{AM}(\mathbf{y}) + \alpha \log p_{LM}(\mathbf{y}) + \beta |\mathbf{y}|$

Key Results and Observations - I

- Pretraining significantly improves the performance on benchmark datasets.
- Our pretraining data has **more diversity**, **better distribution** of data across languages
 - Result It generalises better for languages not seen during pretraining.
- The LARGE model consistently outperforms the BASE model.
- Starting with **English wav2vec checkpoint** saves compute resources
- The Language Model plays an important role.
 - Especially when limited training data is available
- Finetuning data size: very small data size (~1hr) not sufficient
 - unlike results on English Wav2Vec: Pre-training size? Language characteristics?

Key Results and Observations - II

		MSR				MU	JCS		OpenSLR			
	gu	ta	te	gu	hi	mr	or	ta	te	bn	ne	si
M0: No pretraining	46.0	37.5	35.5	53.2	48.1	87.1	73.4	44.8	44.7	36.0	78.8	37.0
M1: IndicW2V _b (EkStep data)	23.4	24.0	25.8	30.3	18.0	26.5	28.7	29.9	33.2	19.7	14.4	31.0
M2: IndicW2V _b (our data)	22.8	23.7	24.9	29.4	17.8	24.3	27.2	29.3	31.9	18.1	13.8	24.3
M3: IndicW2V $_l$ (our data)	20.5	22.1	22.9	26.2	16.0	19.3	25.6	27.3	29.3	16.6	11.9	24.8
M4: $+ LM_{small}$	16.6	14.9	14.4	18.0	16.3	14.8	19.0	25.4	22.4	14.3	13.0	18.6
M5: $+ LM_{large}$	11.7	13.6	11.0	17.2	14.7	13.8	17.2	25.0	20.5	13.6	13.6	-
M6: + augmented lexicon	12.3	15.1	12.4	14.8	10.5	12.2	21.9	20.0	15.2	10.6	9.7	-
M7: + Rescoring	11.9	14.8	12.0	14.3	9.5	11.7	20.6	19.5	15.1	10.5	9.4	-

Table 3: Comparison of different choices for pretraining, fine-tuning, and decoding. IndicW2V_b and IndicW2V_l refer to our base and LARGE models respectively. LM_{small} refers to the language model trained using transcripts from the training and validation data and LM_{large} refers to the one trained using IndicCorp in addition to the transcripts.

SOTA results on ASR Benchmarks

	hi	gu	mr	or	ta	te
Baseline	27.45	25.98	20.41	31.28	35.82	29.35
CSTR	14.33	20.59	15.79	25.34	23.16	21.88
BSA	16.59	21.30	15.65	17.81	28.59	25.37
EM	17.54	20.11	20.15	19.99	28.52	26.08
EkStep	12.24	30.65	39.74	27.10	27.20	22.43
Uniphore	22.79	22.79	14.9	29.55	18.8	28.69
Lottery	17.81	23.62	58.78	17.74	30.69	27.67
IIITH	31.11	26.94	33.8	37.19	35.03	17.00
M5:	14.7	17.2	13.8	17.2	25.0	20.5
M6:	10.5	14.8	12.2	21.9	20.0	15.2

Table 8: Comparison of our best models (M5, M6) with the the top performers from the MUCS 2021 leaderboard. Individual best models from the leaderboard are underlined.

	gu	ta	te
Baseline (Srivastava et al., 2018)	19.8	19.4	22.6
Jilebi (Pulugundla et al., 2018)	14.0	13.9	14.7
Cogknit (Fathima et al., 2018)	17.7	16.0	17.1
CSALT-LEAP (Srivastava et al., 2018)	-	16.3	17.6
ISI-Billa (Billa, 2018)	19.3	19.6	20.9
MTL-SOL (Sailor and Hain, 2020)	18.4	16.3	18.6
Reed (Sen et al., 2021)	16.1	19.9	20.2
CNN + Context temporal features (Sen et al., 2020)	18.4	24.3	25.2
EkStep model*	19.5	22.1	21.9
M5:	11.7	13.6	11.0
M6:	12.3	15.1	12.4

Table 9: Comparison of our best models (M5, M6) with the the top performers from the MSR 2018 leaderboard as well as other recent state of the art methods.

	bn	ne	si
Baseline (Shetty and Umesh, 2021)	17.9	12.9	21.8
Ekstep model*	15.2	13.8	20.0
M4:	14.3	13.0	18.6
M6:	10.6	9.7	-

Table 10: Comparison of our best models (M4, M6) with state-of-the-art results reported in the literature. * The Ekstep model was fine-tuned by us.

Future Possibilities

- Increase pre-training corpus size
- Collect supervised training data
- Combining supervised and unsupervised objectives
- Create benchmark testsets

INCLUDE

Indian Sign Language (ISL)

People – Data – Models

with Advaith, Gokul, Prem, Mohit, Vivek, Manohar, Mitesh, Roshni

Philanthropies

Context

> 5 million Size of the Deaf community in India

Indian Sign Language (ISL)

Primary means of communication for the community

Data Poverty

No large publicly available dataset on ISL

Education <1% has formal education in ISL

Unemployment 76% within the Deaf community

People

First large-scale survey of challenges of Indian Deaf

ISL Diversity Stigma Grammatical issues Challenges at workplace Issues with tools

ISL Diversity Stigma Grammatical issues Challenges at workplace

Issues with tools

"The sign for 'marriage' is shown by a mangalsutra necklace in Chennai, while in Hyderabad it is shown by the holding of hands."

ISL Diversity Stigma Grammatical issues

Challenges at workplace Issues with tools *"I go start my exercise walking now it"*

instead of

"I shall now start my walking exercise".

ISL Diversity Stigma Grammatical issues Challenges at workplace Issues with tools

"Now I want to go to the next" level... But my manager is not able to understand what I'm trying to say. If I have to write and ask about the promotion, the management team will be asking questions... I am afraid that they will give me lecture on it. so its better to not talk about it"

Data

Collaborative data collection

Collect data while teaching a course @ National Institute of Speech and Hearing

English for workplace course (8 weeks)

1. Introducing yourself

Hello! I am

Ajay

Introducing Yourself

Objective: Introduce yourselves to your friends and colleagues at work place.

'The Key to a good introduction is to smile and be confident'

Good <morning> or hello Sir/Madam/<Name>

For example: Good morning / afternoon <name of any one participant>

Step 2: Share your nan

I am <Name>

2. Knowing about job

Knowing more about your Job

Objective: Understanding the importance of knowing more about your Job and to be able to communicate at workplace effectively.

The Key to know more about your job is - Ask questions. It is the best way to learn'.

3. Talking to HR

Talking to HR [Human Resources]

Objective: To understand more about HR Policies, Taxes, Salary plus benefits & Split and other legal things

Key: To get answers to your questions on Human Resources.

Meeting Human resource department to complete your documentation / paperwork will be one part of your joining formalities. You may have some doubts or questions about your salary/ taxes/ benefits which can be said further

4. Meetings

Unit - 4 - Sentences around Meetings

(Setting them up - taking Minutes of the meeting (MoM) etc...)

Objective: To understand the concept and importance of office meetings and to participate In the meetings.

Key: Meetings are conducted to have a clear objective, whether the meeting is needed to generate new ideas, to gather information, or to make decisions

What is a Meeting / Define Meeting.

A meeting is a gathering of two or more people for the purpose of making decisions or discussing company objectives and operations. Meetings are generally conducted in person in an office. Meetings allow everyone to work towards a common gool.

Meetings are very important - if done well. Meetings help people feel included.

trusted and make the team members feel important, as well as giving them the opportunity to contribute to the success of companie

5. Taking leave

Unit - 5 - Taking Leave

Objective: To understand the types of leave that can be taken when you are working in

Key: Scheduling & Planning of Leave helps you to work effectively.

What is taking leave / Define leave

A leave is request or permission taken from an immediate next higher level of authority, who normally supervises your / (employee's) work. This request is approved by the immediate manager and then forwarded to HR.

Taking a leave or taking day off from work can be necessary or at times important based on an emergency for e.g. Employees take a leave because of an illness, the need to care for a close family member with an illness, a death in the family (sometimes called funeral), the birth of a child, wedding

6. Promotions

Unit - 6 - Discussions around Promotions and Negotiating Pay

Objective: Learn how to have discussion on promotions and on negotiating pay.

Key: To Understand the sensitivity of negatiating pay / money talking

It's one of the most Sensitive & difficult conversations to have with your superiors

What is promotion at work? · A job promotion is when an employer moves an employee

their performance

7. Interviews Session - 1: How to prepare for an Interview. Objective: To understand the importance of knowing the stages and how to prepare for an interview.

Key: Plan, Prepare & Practice before an Interview. Job interviews provide an opportunity for you and your employer to decide how well your skills align/meet with the company's needs. What is an interview / Define Interview? An interview is a conversation / meeting between people, where you will be examined / questioned / evaluated, on your gualification / skills, required for the job

8. Examination

Written exam and signing test

Karya app7460329
app versions29
contributors

Crucial tool for online education for Deaf given low penetration of formal education

Models

🡐 OpenHands Library

Open-source pose-based efficient models

On CPU real-time Transformer-based networks achieving SOTA results on most

Self-supervised learning for sign language

Pre-training trick

With unlabeled video learn what sign language "looks like" Then fine-tune on smaller amount of labelled data

1,129 hours of ISL videos 91.2 to 94.7 accuracy on INCLUDE

Additional benefits for pre-training

Dataset (Language)	Videos per word	No pretraining	Pretraining on ISL
	Full – Avg 17	91.2	94.7
INCLUDE	10	79.7	86.3
(Indian)	5	45	57.4
	3	15.2	35.4

Pretraining is particularly effective when there are fewer examples per label

Pretraining in ISL is effectively transferring to other languages

What's next

People Ludic Design

Joyful and inclusive play between the Hearing and Deaf

Data

Curating labelled sign language data from the web Crowdsourcing 1,000 hours of labelled data using Karya

Models

Pretrained multilingual models Open-source pose-based models for continuous sign language

"... we must be second to none in the application of advanced technologies to the real problems of man and society."

- Vikram Sarabhai

Research Roadmap

DL Modeling

- Model distillation
- Model compression
- Fast inference
- Training with noisy data

Multilinguality

- Multilingual Generation
- Mixture of Experts
- Curriculum Learning
- Romanized/code-mixed input

Self-supervised Learning

- Unsupervised + Supervised objectives
- Utilizing parallel data
- Low monolingual data scenarios

Multimodal Modeling

- Speech understanding
- Speech/Image Translation
- Multi-task modeling

We would love to engage with the community

Help build the IndicNLP Catalog

IndicNLP Catalog

Evolving, collaborative catalog of Indian language NLP resources

Please add resources you know of and send a pull request

- Major Indic Language NLP Repositories
- Libraries and Tools
- Evaluation Benchmarks
- Standards
- Text Corpora
 - Unicode Standard
 - Monolingual Corpus
 - Language Identification
 - Lexical Resources
 - NER Corpora
 - Parallel Translation Corpus
 - Parallel Transliteration Corpus
 - Text Classification
 - Textual Entailment/Natural Language Inference
 - Paraphrase
 - Sentiment, Sarcasm, Emotion Analysis
 - Question Answering
 - Dialog
 - Discourse
 - Information Extraction
 - POS Tagged corpus
 - Chunk Corpus
 - Dependency Parse Corpus
 - Co-reference Corpus
- Models
 - Word Embeddings
 - Sentence Embeddings
 - Multilingual Word Embeddings
 - Morphanalyzers
 - SMT Models
- Speech Corpora
- OCR Corpora
- Multimodal Corpora
- Language Specific Catalogs

Featured Resources

- Al4Bharat IndicNLPSuite: Text corpora, word embeddings, BERT for Indian languages and NLU resources for Indian languages.
- IIT Bombay English-Hindi Parallel Corpus: Largest en-hi parallel corpora in public domain (about 1.5 million semgents)
- CVIT-IIITH PIB Multilingual Corpus: Mined from Press Information Bureau for many Indian languages. Contains both English-IL and IL-IL corpora (IL=Indian language).
- · CVIT-IIITH Mann ki Baat Corpus: Mined from Indian PM Narendra Modi's Mann ki Baat speeches.
- INLTK: INLTK aims to provide out of the box support for various NLP tasks that an application developer might need for Indic languages.
- Dakshina Dataset: The Dakshina dataset is a collection of text in both Latin and native scripts for 12 South Asian languages. Contains an aggregate of around 300k word pairs and 120k sentence pairs. Useful for transliteration.

Parallel Translation Corpus

- IIT Bombay English-Hindi Parallel Corpus: Largest en-hi parallel corpora in public domain (about 1.5 million semgents)
- CVIT-IIITH PIB Multilingual Corpus: Mined from Press Information Bureau for many Indian languages. Contains both English-IL and IL-IL corpora (IL=Indian language).
- CVIT-IIITH Mann ki Baat Corpus: Mined from Indian PM Narendra Modi's Mann ki Baat speeches.
- PMIndia: Parallel corpus for En-Indian languages mined from Mann ki Baat speeches of the PM of India (paper).
- Indian Language Corpora Initiative: Available on TDIL portal on request
- OPUS corpus
- WAT 2018 Parallel Corpus: There may significant overlap between WAT and OPUS.
- Charles University English-Hindi Parallel Corpus: This is included in the IITB parallel corpus.
- Charles University English-Tamil Parallel Corpus
- Charles University English-Odia Parallel Corpus v1.0
- Charles University English-Odia Parallel Corpus v2.0
- Charles University English-Urdu Religious Parallel Corpus
- IndoWordnet Parallel Corpus: Parallel corpora mined from IndoWordNet gloss and/or examples for Indian-Indian language corpora (6.3 million segments, 18 languages).
- MTurk Indian Parallel Corpus
- TED Parallel Corpus
- JW300 Corpus: Parallel corpus mined from jw.org. Religious text from Jehovah's Witness.
- ALT Parallel Corpus: 10k sentences for Bengali, Hindi in parallel with English and many East Asian languages.
- FLORES dataset: English-Sinhala and English-Nepali corpora
- Uka Tarsadia University Corpus: 65k English-Gujarati sentence pairs. Corpus is described in this paper
- NLPC-UoM English-Tamil Corpus: 9k sentences, 24k glossary terms

https://github.com/AI4Bharat/indicnlp_catalog
We would love to engage with the community

Help build the IndicNLP
Catalog

Feedback/ feature-requests on models/datasets

Discovering datasources

Educate us on important usecases

Resources we have created so far

Indic BERT - <u>https://indicnlp.ai4bharat.org/indic-bert/</u>

Indic monolingual corpus - <u>https://indicnlp.ai4bharat.org/corpora</u>

IndicNLP suite - https://indicnlp.ai4bharat.org/home/

Samanantar bitext corpus -

https://storage.googleapis.com/samanantar-public/V0.3/source_wise_splits.zip

Translation models - https://github.com/AI4Bharat/indicTrans

ASR dataset and models - <u>https://indicnlp.ai4bharat.org/indicwav2vec/</u>

INCLUDE dataset - https://zenodo.org/record/4010759

OpenHands sign language models - <u>https://github.com/AI4Bharat/OpenHands</u>

Thank you!

Website: <u>https://indicnlp.ai4bharat.org</u> Github: <u>https://github.com/Al4Bharat</u>

Contact: miteshk@cse.iitm.ac.in pratyush.k.panda@gmail.com anoop.kunchukuttan@gmail.com