When Transliteration Met Crowdsourcing : An Empirical Study of
Transliteration via Crowdsourcing using Efficient, Non-redundant and Fair
Quality Control

Mitesh M. Khapra*, Ananthakrishnan Ramanathan*, Anoop Kunchukuttanf,
Karthik Visweswariah*, Pushpak Bhattacharyya'
*IBM Research India,
Bangalore, India.
mikhapra@in.ibm.com, anandr42 @ gmail.com, v-karthik@in.ibm.com

 Department of Computer Science and Engineering,
IIT Bombay,
Mumbai, India.
anoopk, pb@cse.iitb.ac.in

Abstract
Sufficient parallel transliteration pairs are needed for training state of the art transliteration engines. Given the cost involved, it is
often infeasible to collect such data using experts. Crowdsourcing could be a cheaper alternative, provided that a good quality control
(QC) mechanism can be devised for this task. Most QC mechanisms employed in crowdsourcing are aggressive (unfair to workers)
and expensive (unfair to requesters). In contrast, we propose a low-cost QC mechanism which is fair to both workers and requesters.
At the heart of our approach, lies a rule based Transliteration Equivalence approach which takes as input a list of vowels in the two
languages and a mapping of the consonants in the two languages. We empirically show that our approach outperforms other popular QC
mechanisms (viz., consensus and sampling) on two vital parameters : (i) fairness to requesters (lower cost per correct transliteration) and
(ii) fairness to workers (lower rate of rejecting correct answers). Further, as an extrinsic evaluation we use the standard NEWS 2010 test
set and show that such quality controlled crowdsourced data compares well to expert data when used for training a transliteration engine.

Keywords: crowdsourcing, transliteration, quality control

1. Introduction

Transliteration plays an important role in CLIR and MT by
handling OOV terms in queries and documents (Choi et al.,
2011). Several algorithms have been proposed to address
this problem. However, most state-of the art approaches for
transliteration (Jiampojamarn et al., 2009; Oh et al., 2009;
Jansche and Sproat, 2009) are data driven and need signif-
icant parallel words data which is not readily available for
many languages. Employing experts to create such data is
both time consuming and expensive, and hence not desir-
able. While one could argue that such data can be mined
from online resources such as parallel Wikipedia articles, it
should be noted that for many language pairs very few par-
allel resources are available to yield any meaningful amount
of data (Khapra et al., 2010). This situation leads to the fol-
lowing question: Can such data be collected at low cost
while not compromising much on quality?

The above question led us to crowdsourcing which is in-
creasingly being used for creating speech and language data
for several NLP tasks (Callison-Burch and Dredze, 2010),
such as, paraphrasing (Denkowski et al., 2010), annotating
named entities (Yetisgen-Yildiz et al., 2010), transcription
(Evanini et al., 2010), Subjectivity WSD (Akkaya et al.,
2010), collecting translations (Ambati and Vogel, 2010),
etc. The success of crowdsourcing depends on having a
good quality control (QC) mechanism which can automat-
ically reject incorrect answers and be fair to both workers
and requesters. Two popular QC mechanisms are consen-
sus based QC (Ipeirotis et al., 2010) and sampling based

QC (Eickhoff and de Vries, 2011; Le et al., 2010; Oleson et
al., 2011). In consensus based QC, the same task is given to
multiple workers and the correct answer is selected based
on majority voting. In sampling based QC, a small sample
of the worker’s answers are evaluated against a gold stan-
dard and his entire work is accepted/rejected based on the
performance on this sample. These techniques are often
aggressive and unfair to workers as they end up rejecting a
lot of good work submitted by them. Further, the inherent
redundancy involved in these mechanisms adds to the cost
which makes them unfair to requesters also. Hence, there is
a need for a task-specific, fair, efficient and non-redundant
QC mechanism.

In this paper, we focus on the task of collecting paral-
lel transliteration pairs using crowdsourcing and propose
a low-cost QC mechanism for this task. Our approach re-
lies on a list of vowels in the two languages and a mapping
between the consonants of the two languages. For exam-
ple, given the consonant ‘k’ in English we are interested in
the set of Hindi graphemes to which it can be transliterated.
An expert bilingual (English and Hindi) speaker just took
30 minutes to prepare a full list of such consonant mappings
for English and Hindi. Given such a mapping, we propose a
rule based approach to identify correct transliterations sub-
mitted by the crowd. Since our algorithm requires very lim-
ited language-specific information (just a list of vowels, and
a mapping between consonants) it is easy to adapt to new
language pairs as we show in section 8.

We empirically compare our approach to two popular QC
mechanisms described earlier and show that our approach

performs better in terms of both, fairness to workers and
fairness to requesters. It is fairer to workers than the other
two approaches as it has a lower rate of rejecting correct
answers (29% lower than the best competitor). Moreover,
it is also fairer to requesters as it has a lower cost per correct
transliteration (13% lower than the best competitor). This
makes it more suitable for large scale data collection. Fi-
nally, a good extrinsic test of the quality of crowdsourced
data would be to compare the performance of a state of the
art engine trained on such data with the performance of the
same engine trained on data created by experts. Our exper-
iments involving the standard NEWS 2010 Transliteration
test set suggest that the performance of an engine trained on
crowdsourced data comes close to that of an engine trained
on expert data. The main contributions of our work can be
summarized as follows:

1. We empirically evaluate the quality of transliteration
data collected using crowdsourcing.

2. We propose a low cost QC technique for this task
which is fair to both workers and requesters.

3. We do an error analysis and give useful insights into
the data collected by the crowd.

4. We perform extrinsic evaluations to verify the us-
ability of crowdsourced data for building downstream
transliteration engines.

5. We provide some extrinsic evaluation to prove that
the proposed QC mechanism could work for language
pairs other than Hindi-English also.

The remainder of this paper is organized as follows. In
Section 2. we discuss related work on crowdsourcing. In
Section 3. we outline our rule-based approach for filtering
incorrect transliteration pairs. In Section 4. we give de-
tails of the experimental setup used for collecting data using
crowdsourcing. In Section 5. we briefly discuss how differ-
ent QC mechanisms were employed for our task. In Section
6. we empirically compare different QC mechanisms based
on fairness to workers and fairness to requesters. Next, in
Section 7. we evaluate the usefulness of crowdsourced data
in training a transliteration engine and evaluate the perfor-
mance of our approach on other languages in Section 8.
Finally, we present concluding remarks in Section 9.

2. Related Work

In recent years, crowdsourcing has become increasingly
popular. For example, (Callison-Burch and Dredze, 2010)
and (Snow et al., 2008) report the use of crowdsourcing for
collecting data and manual evaluations for various NLP and
IR related tasks. In general, these studies show that non-
expert annotations show a high degree of agreement with
expert annotations and systems trained with non-expert an-
notations perform comparably to systems trained with ex-
pert annotations. While crowdsourcing has been tried for
a variety of tasks, to the best of our knowledge, ours is the
first attempt to use crowdsourcing for collecting transliter-
ations.

Ensuring quality of crowdsourced data in the presence of
factors such as malicious workers, inexperienced workers,
subjectivity of the task, efc. is a challenging task. Pre-
filtering of workers on the basis of worker accuracy or ge-
ographical locations and other such criteria is one of the
simplest methods adopted to assure worker quality (Eick-
hoff and de Vries, 2011). However, worker accuracies can
be artificially boosted up and there is no incentive for the
worker to be honest once the pre-filtering has been passed
successfully. Asking multiple workers to do a task and de-
ciding the correct result based on consensus or majority
voting (Ipeirotis et al., 2010) is a popular approach, though
this approach can often be aggressive and has inherent re-
dundancy. Use of gold standard data to evaluate a sample of
the work is also a popular method to identify spam work-
ers (Eickhoff and de Vries, 2011; Le et al., 2010; Oleson
et al., 2011). The use of redundancy (for consensus) and
gold judgments (for sampling) add to the cost of the task
which is unfair to requesters. Sometimes, an additional val-
idation/ranking stage (Zaidan and Callison-Burch, 2011) is
also used but there is no guarantee that these validations are
themselves honest and correct (and such validations add to
the cost). In contrast, we propose an efficient QC mech-
anism for the task of collecting transliteration pairs which
has no additional cost and is fair to workers.

3. A Rule Based Transliteration Equivalence
algorithm

Let ¢ be the transliteration submitted by a worker for an in-
put word 4. A good QC mechanism should be able to reject
this task if ¥ is not a correct transliteration of 4 and accept it
otherwise. Further, since we do not have any training data
to begin with, such an algorithm should be minimally su-
pervised. We propose one such minimally supervised rule
based algorithm which solves this problem of recognizing
transliteration equivalence.

The proposed algorithm only needs two pieces of informa-
tion: (i) a list of vowels in the two languages (which we
pick up from the Wikipedia page for the script!) and (ii)
a list of consonant mappings between the two languages.
As mentioned, such a list of consonant mappings can be
created in a very short time (30 minutes) by a bilingual
speaker. For example, Figure 1 shows the complete list
of English Hindi consonant mappings created by a native
bilingual speaker. The first entry in this table suggests that
according to a native bilingual speaker’s intuition, when a
Hindi word containing the consonant ka (which represents
the sound ka) is translated to English then this consonant
will get transliterated as k (as in king) or c (as in candid)
or ¢ (as in queen). Given such a list of vowels and conso-
nant mappings, we use a task-aware matching step that uses
these mappings to filter out incorrect transliteration pairs
from the collected data. We describe this algorithm in the
next subsection.

3.1. Identify Correct Transliterations (Match)

Given a word pair @ <> v such that & € language L1 and
v € language Lo, a list of vowels in L and Lo and a set

'for example, Hindi vowels are from
http://en.wikipedia.org/wiki/Devanagari

% (ka) kecq T (ta) t T (pa)
@ (kha) k 3 (tha) t B (fa)
T (ga) g g (da) d (ba)
H (gha) g @ (dha) d H (bha)
2 g UT (na) n H (ma)
T (cha) c d (ta) t T (ya)
T (chha)c I (tha) t T (ra)
o (jha) jgzs & (da) d o (la)
=H (jha) j,s,z e (dha) d T (va)
3 (jha) j T (ha) n

— "< 3 T OT3T T

<
=

AD
=

(sha) s
Y (sha) s q (tra) t
T (sa) s,c

g (ha) h
& (khsa)s
o (jha) z,xs
§ (da) d

& (dha) d
% (fa) fp

—

Figure 1: A mapping between the consonants of Hindi and English

of mappings M between the consonants in L; and Lo, the
matching process proceeds as follows:

[1.] Check boundary vowels: If @ begins/ends with a
vowel and v does not begin/end with a vowel, or vice-versa,
return Failure (‘No match’). Note that, for this check we
allow for a stop list of vowels (e.g., we do not insist that an
“e” at the end of a word in English match with a vowel in
the other language).

[2.] Remove vowels: Remove all vowels from both @
and 0 to obtain the letter sequences u7 and v]* respectively.

[3.] Search:
— Initialize the hypothesis space: For i in 1 to n, S; = ()
— For-each letter u; in u?

e For-eachrule u; <+ v; in R, append v; to each string
in S;_1 and add it to S;

— If v]* in Sy, return Success (‘Match’)

[4.] Handle letter repetitions: Sequences of identical
adjacent letters are compressed into single occurrences in
both v]* and in all strings in S,,. Now if v]* € S, return
Success (‘Match’).

Example: Let “luck” be the source word and “A< (lak)”
be its transliteration as submitted by a worker. Further, let’s
assume that the following mapping rules are available : 1 <>
o (la), ¢ <> & (ka), c <> T (sa), k <> & (ka). We proceed
as follows:

e Check boundary vowels: Both words begin and end
with consonants, so the match proceeds to the next
step (if the Hindi word had been AT (lakid), this step
would have failed).

e Remove vowels: We now have Ick <> @& (Ik).

e Search: The hypothesis space at the final ply is Sy =
Tqh (Isk), T (Lkk)

e Handle letter repetitions: Now, Sy = @q® (Isk),
AT (lkk), T (k).

Since A& ((k) is in Sy, the match succeeds.

4. Data collection

We now discuss the experimental setup that we used for
collecting transliterations via crowdsourcing. Following
Amazon Mechanical Turk (AMT) terminology, in the
remainder of this paper we use the terms answer and
transliteration interchangeably.

Platform: We used AMT since it is one of the most
preferred crowdsourcing platforms.

Data source: To ensure easy replicability we used the
standard NEWS 2010 dataset (Li et al., 2010). Specifically,
we asked the crowd to provide English transliterations
for the Hindi source words in the training portion of this
dataset. The reason we chose Hindi — English as the
direction of transliteration is that we felt it would be easier
for workers to type in English than in Devanagari.

HITs: We floated the tasks in batches of 10. In AMT
parlance this means that each HIT (Human Intelligence
Tasks) contained 10 tasks where each task comprised of
providing transliterations for one Hindi word. We floated
1500 such HITs and collected transliterations for 15K
words.

Price: The workers were paid 0.002 dollars per word,
whereas the cost of getting the same work done by an
expert is ten times greater at 0.02 dollars per word.

Instructions: To avoid confusion, the workers were given
examples of Hindi words and their English transliterations.
In order to get natural transliterations, we refrained from
providing any character mappings (such as itrans) to the
workers and simply asked then to transliterate the source
words using their knowledge of the two languages.

Worker quality: Only those workers who had a previous
record of more than 5000 approved HITs with an approval
rate of >95% were allowed to preview/accept our HITs.

Time limits: Once a worker accepts a HIT he/she was
given 24 hours to complete it (which is much more than
sufficient since each HIT consists of 10 words only).
Workers typically took less than 3 minutes to complete one

HIT.

Batches: With a hope of getting some variety in the
workers, we floated the 1500 HITs in 3 batches with a gap
of 3 days between each batch.

Redundancy: Each HIT was assigned only to one worker
(i.e., there was no redundancy). However, later to compare
different QC methods, we collected 100 HITs with a redun-
dancy of 3, i.e., the same HIT was assigned to 3 workers.

5. Different QC mechanisms

As mentioned earlier, we collected transliterations for
15000 words by floating 1500 HITs on AMT. We ran
simulations on this data to compare the following QC
mechanisms :

Match: Here, we employ the matching algorithm dis-
cussed in Section 3. to determine whether an answer
submitted by a worker is correct or not. Essentially, only
those transliterations which are marked as correct by our
algorithm are accepted (we reiterate that we ran an of-
fline simulation on the data collected using crowdsourcing).

Sampling: Here, we sampled n (<10) answers (i.e.,
transliterations) from each HIT submitted by a worker.
We then manually evaluated these n answers and if ¢
(<=n) out of these answers were correct then we accepted
the HIT, else we rejected it. In practice, this manual
verification can be minimized by first asking an expert to
give all possible transliterations for a small set of m words
(say, m=100). Each HIT can then contain n out of these
m words and the answers provided by the crowd can be
directly compared with the gold transliterations collected
earlier. We used n=3 because typically an odd number
(>1) is preferred and n > 3 would have been highly
redundant.

Consensus: Here, the same HIT is assigned to n workers.
For a given word 4, if k out of n workers provide ¢ as the
transliteration then 9 is accepted as a correct transliteration
else it is considered incorrect. For the purpose of evalu-
ation, only 100 out of the 1500 HITs were assigned to 3
workers each (the remaining HITs were assigned to only
one worker).

Baseline: Here, all the answers submitted by the crowd are
accepted as correct answers.

6. Intrinsic evaluation

Before comparing the above methods, we ask the following
question: In a crowdsourcing environment what does a
worker/requester really wish for? 1If the price and nature
of the task are fixed, then an honest worker wishes that
none of his/her correct answers are rejected. Similarly,
a requester wishes that the cost he/she pays per correct
answer should be minimum. The cost per correct answer in
turn depends on the accuracy of the QC mechanism and the
redundancy involved. Thus, to be fair to a requester the QC
mechanism should have minimum redundancy and a high

QC P C

Baseline 71.7 1.4
Match 82.3 1.22
Sampling n=3,c=3 83.3 1.71
n=3,c=2 723 1.98
n=3,c=1 573 2.49
Consensus n=3,k=3 97.2 3.09
n=3,k=2 883 3.40
n=3,k>2 919 3.26

Table 1: A comparison of the precision (P) and cost (C) per
correct transliteration of different QC mechanisms.

precision (i.e. a very high fraction of the answers accepted
by it should be actually correct). In this context, we now
compare different QC methods based on two parameters :
(1) fairness to requesters and (ii) fairness to workers.

Fairness to requesters: This parameter relates to the cost
per unit word and depends on the precision of the QC mech-
anism and the redundancy involved. First, to measure preci-
sion, for each QC mechanism we randomly collected 1000
words that were accepted by that QC mechanism. We man-
ually evaluated these words to find out the percentage of
words that were actually correct (a high number here is de-
sired). Next, we estimate the cost per correct word. Note
that, if we assume that the cost of collecting 1 transliteration
is 1 unit then the effective cost of collecting one transliter-
ation for the consensus based method is 3 units (since we
need to collect 3 transliterations per word). Similarly the
effective cost of collecting one transliteration for the sam-
pling based method is 1.4 (10/7 since each HIT contains 3
redundant words for which the answers are already known).
On the other hand, since our approach has no redundancy
the effective cost of collecting one transliteration is just 1
unit. Further, if a QC mechanism accepts y answers as cor-
rect and only z of them are actually correct then the effec-
tive cost per correct answer (C) is

. Accepted answers
C =Effective cost per answer - f£ccepled answers
Correct Answers

Effective cost per answer

Precision

The above formula thus accounts for both: (i) overhead
due to redundancy and (ii) overhead due to incorrect
answers. Table 1 compares the precision and cost per
correct transliteration of different QC methods. For the
sampling based method, we report numbers with n=3 and
c=1,2,3. Similarly for the consensus based method we
report numbers with n=3 and k=2,3. We note that the
precision of the consensus based method is very high but
its cost per correct transliteration is also high due to the
high redundancy involved. Similarly, the cost per correct
transliteration for the sampling based method is also high.
Our approach has the least cost per correct transliteration
(even though its precision is lower than consensus based
QC) and is thus most fair to requesters.

Fairness to workers: To quantify this parameter, we took

QC mechanism % of rejected answers that

were actually correct

Match 19.0 %
Sampling(n=3, c=3) 64.0%
Consensus(n=3, k=3) 48.5%

Table 2: A comparison of different QC mechanisms based
on fairness to workers.

100 answers each which were rejected by the three strate-
gies and compared the fraction of these answers which were
actually correct (a low number here is desired). We re-
port numbers corresponding to the lowest cost per correct
transliteration. As is evident from Table 2, our algorithm
clearly outperforms the other two approaches on this pa-
rameter. The poor numbers for sampling based QC and
consensus based QC can be explained as follows. In the
sampling method, a HIT is rejected if the number of n sam-
pled answers that are correct is less than k. This is unfair to
the workers because some of the remaining 10 — n answers
might be correct but they do not receive any payment for
these correct answers. Similarly, in the redundancy based
method, it is possible that one worker has given a correct
transliteration which does not agree with the other 2 work-
ers. Given that there are multiple ways of transliterating a
word this situation could be quite common.

Note that, while the baseline (accepting all answers)
is obviously most fair to workers, it may not be ac-
ceptable for the task since it compromises much more
on precision, and is less fair to requesters as seen in Table 1.

We would like to briefly mention how our approach can be
used in practice, to ensure that a requester pays only for
correct answers. For this, we propose the following strat-
egy which harnesses the ‘bonus payment’ feature provided
by AMT (i) accept a HIT if all the 10 answers are marked
as correct by the matching algorithm (ii) reject a HIT if &
(>0) out of the 10 answers are marked as incorrect by the
matching algorithm. Then pay the worker for his 10—k cor-
rect answers on a pro-rata basis using the ‘bonus payment’
feature provided by AMT. Alternatively, each HIT could
contain only one word in which case it would be simple
to just accept or reject the HIT based on the verdict of the
matching algorithm. However, this is not advisable because
workers might find it irritating to work on HITS containing
only one word.

6.1. Error analysis

We split the input data into two parts : Indian origin words
(e.g., Shankar, Ram, efc.) and non-Indian origin words
(e.g., Stephen, George, efc.). We found that the ratio of
Indian to non-Indian origin words in the data was roughly
3:2. We then randomly selected 1K words from the 15K
words submitted by the crowd and manually evaluated the
accuracy on these two sets. As shown in Table 3, the crowd
did a much better job of transliterating Indian origin words
(precision of 76%) than non-Indian origin words (preci-
sion of 66%). In Table 4, we list down some non-Indian
origin words which were transliterated incorrectly by the
crowd. Note that the incorrect transliterations are phono-

Words Precision
Indian origin 76.0
non-Indian origin 66.2
All 71.7

Table 3: Accuracy of crowd on words of different origins.

Crowd(incorrect) Expert(correct)
pablic public

skool school
universitee university
zyoorik zurich

landan london

Table 4: Errors made by the crowd on some non-Indian
origin words.

logically correct even though they are orthographically in-
correct. Further, in most cases, these errors were mainly
in transliterating vowels. This is mainly because, in En-
glish, vowels have an ambiguous phoneme to grapheme
mapping. For example, the grapheme ’o’ represents differ-
ent sounds in orange and bison. Hence, non-native speakers
may use these vowels interchangeably to produce an incor-
rect transliteration.

7. Extrinsic Evaluation

As an extrinsic evaluation of the data collected using
crowdsourcing, we measure its adequacy in training a
transliteration engine. Specifically, we trained a state of
the art transliteration engine using the 12K transliterations
which were accepted by our QC mechanism (match). We
train the same engine using manual transliterations for the
same 12K Hindi words as provided in the NEWS 2010
training set (Li et al., 2010). As a baseline, we also train
the same engine using 12K randomly selected translitera-
tion pairs from the crowdsourced data (i.e., no QC is used).
For all experiments we use the open-source implementa-
tion of DirectL (Jiampojamarn et al., 2010) which is the
current state of the art algorithm for transliteration. The
performance was evaluated on the NEWS 2010 test set (Li
et al., 2010). As shown in Table 5, the performance of Di-
rectL. when trained on quality controlled crowdsourced data
is close to that of an engine trained on data created by ex-
perts even though the crowdsourced data was collected at
1/10th of the cost. Note that due to budget constraints we
could not collect 12K words using the sampling and con-
sensus based method. Hence, we could not do any extrinsic
evaluation for the data collected using these methods (the
intrinsic evaluation reported earlier was done using a sam-
ple of 1K words collected using these two methods).

8. Extending to other languages

Though all our experiments were done on Hindi-English,
we provide some extrinsic proof that the proposed QC
method can work for language pairs other than Hindi-
English also. For this, we use a standard dataset which
was released for the task of mining transliteration pairs

Data top-1 Accuracy
Crowd (12K, no QC) 34.8%
Crowd (12K, QC with our approach) 37.1%
Expert (12K) 39.6%

Table 5: A comparison of the accuracy of a transliteration
engine trained using different data sources.

Method hi-en ar-en ru-en ta-en
Our QC approach 952 89.6 83.8 915
NEWS 2010 944 915 875 914
ACL2011 922 874 760 90.1
ACL2012 957 924 794 932

Table 6: A comparison of our approach with other translit-
eration equivalence approaches.

from Wikipedia titles (Kumaran et al., 2010). This task
deals with filtering correct transliterations from a mix-
ture of correct and incorrect transliterations and is thus
very similar to our task. We compare the performance of
our system with the best systems (supervised) reported in
NEWS 2010 (Kumaran et al., 2010) and two recent state
of the art unsupervised systems (Sajjad et al., 2011; Saj-
jad et al., 2012) on four language pairs (Hindi-English,
Arabic-English, Russian-English and Tamil-English). Ta-
ble 6 shows that our approach compares very well to these
approaches and thus has the potential of serving as a good
QC mechanism for these language pairs also.

9. Conclusions

In this paper, we reported our experiments on collecting
transliteration pairs using crowdsourcing. We proposed
a low cost quality control (QC) mechanism for this task
and showed that our approach outperforms two popular QC
mechanisms in terms of fairness to workers and fairness to
requesters. We also put the crowdsourced data to test by
using it to train a transliteration engine, and found that the
transliteration performance was close to the performance
when trained on data created by experts. This establishes
the practical utility of crowdsourcing for collecting translit-
eration data. We also showed that our approach can work
for other language pairs by evaluating it on public data for
a closely related task. Finally, our error analysis showed
that the crowd is much better at transliterating Indian ori-
gin words than non-Indian origin words. This suggests
that its best to use crowdsourcing for collecting translitera-
tions of native origin words. This could be a useful insight
while employing crowdsourcing to collect transliterations
for other language pairs.

10. References

Akkaya, C., Conrad, A., Wiebe, J., and Mihalcea, R.
(2010). Amazon mechanical turk for subjectivity word
sense disambiguation. In Proceedings of the NAACL
HLT 2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, pages 195-203,
Los Angeles, June. Association for Computational Lin-
guistics.

Ambati, V. and Vogel, S. (2010). Can crowds build par-
allel corpora for machine translation systems? In Pro-
ceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical
Turk.

Callison-Burch, C. and Dredze, M. (2010). Creating
speech and language data with amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s
Mechanical Turk, pages 1-12, Los Angeles, June. Asso-
ciation for Computational Linguistics.

Choi, K.-S., Isahara, H., and Oh, J.-H. (2011). A compar-
ison of different machine transliteration models. CoRR,
abs/1110.1391.

Denkowski, M., Al-Haj, H., and Lavie, A. (2010). Turker-
assisted paraphrasing for english-arabic machine transla-
tion. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s
Mechanical Turk, pages 66—70, Los Angeles, June. As-
sociation for Computational Linguistics.

Eickhoff, C. and de Vries, A. (2011). How Crowdsour-
cable is Your Task? In Lease, M., Carvalho, V., and
Yilmaz, E., editors, Proceedings of the Workshop on
Crowdsourcing for Search and Data Mining (CSDM)
at the Fourth ACM International Conference on Web
Search and Data Mining (WSDM), pages 11-14, Hong
Kong, China, February. Received Most Innovative Paper
Award.

Evanini, K., Higgins, D., and Zechner, K. (2010). Using
amazon mechanical turk for transcription of non-native
speech. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with Ama-
zon’s Mechanical Turk, pages 53-56, Los Angeles, June.
Association for Computational Linguistics.

Ipeirotis, P. G., Provost, F., and Wang, J. (2010). Quality
management on amazon mechanical turk. In Proceed-
ings of the ACM SIGKDD Workshop on Human Compu-
tation, HCOMP " 10, pages 64—-67, New York, NY, USA.
ACM.

Jansche, M. and Sproat, R. (2009). Named entity tran-
scription with pair n-gram models. In Proceedings of
the 2009 Named Entities Workshop: Shared Task on
Transliteration (NEWS 2009), pages 32-35, Suntec, Sin-
gapore, August.

Jiampojamarn, S., Bhargava, A., Dou, Q., Dwyer, K., and
Kondrak, G. (2009). Directl: a language independent
approach to transliteration. In Proceedings of the 2009
Named Entities Workshop: Shared Task on Translitera-
tion (NEWS 2009), pages 28-31, Suntec, Singapore, Au-
gust.

Jiampojamarn, S., Dwyer, K., Bergsma, S., Bhargava, A.,
Dou, Q., Kim, M.-Y., and Kondrak, G. (2010). Translit-
eration generation and mining with limited training re-
sources. In Proceedings of the 2010 Named Entities
Workshop, pages 39-47, Uppsala, Sweden, July. Asso-
ciation for Computational Linguistics.

Khapra, M. M., Kumaran, A., and Bhattacharyya, P.
(2010). Everybody loves a rich cousin: an empirical
study of transliteration through bridge languages. In Hu-

man Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, HLT * 10, pages 420428,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Kumaran, A., M. Khapra, M., and Li, H. (2010). Report
of news 2010 transliteration mining shared task. In Pro-
ceedings of the 2010 Named Entities Workshop, pages
21-28, Uppsala, Sweden, July. Association for Compu-
tational Linguistics.

Le, J., Edmonds, A., Hester, V., and Biewald, L. (2010).
Ensuring quality in crowdsourced search relevance eval-
uation: The effects of training question distribution. In
SIGIR 2010 workshop on crowdsourcing for search eval-
uation, pages 21-26.

Li, H.,, Kumaran, A., Zhang, M., and Pervouchine, V.
(2010). Report of news 2010 transliteration generation
shared task. In Proceedings of the 2010 Named Entities
Workshop, pages 1-11, Uppsala, Sweden, July. Associa-
tion for Computational Linguistics.

Oh, J.-H., Uchimoto, K., and Torisawa, K. (2009). Ma-
chine transliteration using target-language grapheme and
phoneme: Multi-engine transliteration approach. In Pro-
ceedings of the 2009 Named Entities Workshop: Shared
Task on Transliteration (NEWS 2009), pages 36-39, Sun-
tec, Singapore, August.

Oleson, D., Sorokin, A., Laughlin, G., Hester, V., Le, J.,
and Biewald, L. (2011). Programmatic gold: Targeted
and scalable quality assurance in crowdsourcing. Pro-
ceedings of HComp.

Sajjad, H., Fraser, A., and Schmid, H. (2011). An algo-
rithm for unsupervised transliteration mining with an ap-
plication to word alignment. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 430-
439, Portland, Oregon, USA, June. Association for Com-
putational Linguistics.

Sajjad, H., Fraser, A., and Schmid, H. (2012). A statistical
model for unsupervised and semi-supervised translitera-
tion mining. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 469—477, Jeju Island, Korea,
July. Association for Computational Linguistics.

Snow, R., O’Connor, B., Jurafsky, D., and Ng, A. Y.
(2008). Cheap and fast—but is it good?: evaluating non-
expert annotations for natural language tasks. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Yetisgen-Yildiz, M., Solti, 1., Xia, F., and Halgrim, S.
(2010). Preliminary experiments with amazon’s me-
chanical turk for annotating medical named entities. In
Proceedings of the NAACL HLT 2010 Workshop on Cre-
ating Speech and Language Data with Amazon’s Me-
chanical Turk, pages 180-183, Los Angeles, June. As-
sociation for Computational Linguistics.

Zaidan, O. F. and Callison-Burch, C. (2011). Crowd-
sourcing translation: Professional quality from non-
professionals. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:

Human Language Technologies, pages 1220-1229, Port-
land, Oregon, USA, June. Association for Computational
Linguistics.

